Learn More
To isolate genes encoding coenzyme B(12)-dependent glycerol and diol dehydratases, metagenomic libraries from three different environmental samples were constructed after allowing growth of the dehydratase-containing microorganisms present for 48 h with glycerol under anaerobic conditions. The libraries were searched for the targeted genes by an activity(More)
Proteorhodopsin (PR) is a recently discovered ubiquitous eubacterial retinal-binding light-driven proton pump. Almost 1000 PR variants are widely distributed in species of marine and freshwater bacteria, suggesting PR's important photobiological role. PR is a typical seven-transmembrane alpha-helical membrane protein and as such poses a significant(More)
Developments in microanalytical methods are enabling quantitative measurement of multiple metabolic fluxes and, in conjunction with transcript and proteomic profiling, are revolutionizing the ability of researchers to manipulate metabolism through pathway engineering in a variety of species. We review recent literature on the advances in genomics,(More)
Proteorhodopsin is the membrane protein used by marine bacterioplankton as a light-driven proton pump. Here, we describe a rapid cooperative assembly process directed by universal electrostatic interactions that spontaneously organizes proteorhodopsin molecules into ordered arrays with well defined orientation and packing density. We demonstrate the charge(More)
The unusual architecture of the enzyme (MsAcT) isolated from Mycobacterium smegmatis forms the mechanistic basis for favoring alcoholysis over hydrolysis in water. Unlike hydrolases that perform alcoholysis only under anhydrous conditions, MsAcT demonstrates alcoholysis in substantially aqueous media and, in the presence of hydrogen peroxide, has a(More)
Transient holographic diffraction is observed for the green (GPR) and blue (BPR) absorbing proteorhodopsins (BAC31A8 and HOT75M1, respectively), as well as the GPR E108Q and BPR E110Q variants. In contrast to bacteriorhodopsin, where the metastable bR-M pair is responsible for generating diffraction, the pR and red-shifted N-like states fulfill that role in(More)
UNLABELLED Clostridium aceticum was the first isolated autotrophic acetogen, converting CO2 plus H2 or syngas to acetate. Its genome has now been completely sequenced and consists of a 4.2-Mbp chromosome and a small circular plasmid of 5.7 kbp. Sequence analysis revealed major differences from other autotrophic acetogens. C. aceticum contains an Rnf complex(More)
The photochemical and thermal stability of the detergent-solubilized blue- and green-absorbing proteorhodpsins, BPR and GPR, respectively, are investigated to determine the viability of these proteins for photonic device applications. Photochemical stability is studied by using pulsed laser excitation and differential UV-vis spectroscopy to assign the(More)
Emissions of biogenic volatile organic compounds (bVOCs), are an important element in the global carbon cycle, accounting for a significant proportion of fixed carbon. They contribute directly and indirectly to global warming and climate change and have a major effect on atmospheric chemistry. Plants emit isoprene to the atmosphere in similar quantities to(More)
The absorption spectrum of green proteorhodopsin (GPR) is pH-dependent, exhibiting either red-shifted (low pH) or blue-shifted (high pH) absorption maxima. We examine the molecular basis of the pH-dependent spectral properties of green proteorhodopsin by using homology modeling and molecular orbital theory. Bacteriorhodopsin (BR) and sensory rhodopsin II(More)