Greg van Anders

Learn More
Patchy particles are a popular paradigm for the design and synthesis of nanoparticles and colloids for self-assembly. In "traditional" patchy particles, anisotropic interactions arising from patterned coatings, functionalized molecules, DNA, and other enthalpic means create the possibility for directional binding of particles into higher-ordered structures.(More)
Considerable progress in the synthesis of anisotropic patchy nanoplates (nanoplatelets) promises a rich variety of highly ordered two-dimensional superlattices. Recent experiments of superlattices assembled from nanoplates confirm the accessibility of exotic phases and motivate the need for a better understanding of the underlying self-assembly mechanisms.(More)
Entropy drives the phase behavior of colloids ranging from dense suspensions of hard spheres or rods to dilute suspensions of hard spheres and depletants. Entropic ordering of anisotropic shapes into complex crystals, liquid crystals, and even quasicrystals was demonstrated recently in computer simulations and experiments. The ordering of shapes appears to(More)
Following Lin and Maldacena, we find exact supergravity solutions dual to a class of vacua of the plane wave matrix model by solving an electrostatics problem. These are asymptotically near-horizon D0-brane solutions with a throat associated with NS5-brane degrees of freedom. We determine the precise limit required to decouple the asymptotic geometry and(More)
We show that little string theory on S 5 can be obtained as double-scaling limits of the maximally supersymmetric Yang-Mills theories on R×S 2 and R×S 3 /Z k. By matching the gauge theory parameters with those in the dual supergravity solutions found by Lin and Maldacena, we determine the limits in the gauge theories that correspond to decoupling of(More)
Starting with the early alchemists, a holy grail of science has been to make desired materials by modifying the attributes of basic building blocks. Building blocks that show promise for assembling new complex materials can be synthesized at the nanoscale with attributes that would astonish the ancient alchemists in their versatility. However, this(More)
We investigate a class of "shape allophiles" that fit together like puzzle pieces as a method to access and stabilize desired structures by controlling directional entropic forces. Squares are cut into rectangular halves, which are shaped in an allophilic manner with the goal of re-assembling the squares while self-assembling the square lattice. We examine(More)