Learn More
In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discrete-data linear filtering problem. Since that time, due in large part to advances in digital computing, the Kalman filter has been the subject of extensive research and application, particularly in the area of autonomous or assisted navigation. The Kalman filter is a(More)
We introduce ideas, proposed technologies, and initial results for an office of the future that is based on a unified application of computer vision and computer graphics in a system that combines and builds upon the notions of the CAVE™, tiled display systems, and image-based modeling. The basic idea is to use real-time computer vision techniques to(More)
We describe a new paradigm for three-dimensional computer graphics, using projectors to graphically animate physical objects in the real world. The idea is to replace a physical object—with its inherent color, texture, and material properties—with a neutral object and projected imagery, reproducing the original (or alternative) appearance directly on the(More)
The paper presents a system for automatic, geo-registered, real-time 3D reconstruction from video of urban scenes. The system collects video streams, as well as GPS and inertia measurements in order to place the reconstructed models in geo-registered coordinates. It is designed using current state of the art real-time modules for all processing steps. It(More)
We present a novel use of commodity graphics hardware that effectively combines a plane-sweeping algorithm with view synthesis for real-time, on-line 3D scene acquisition and view synthesis. Using real-time imagery from a few calibrated cameras, our method can generate new images from nearby viewpoints, estimate a dense depth map from the current viewpoint,(More)
Conventional projector-based display systems are typically designed around precise and regular configurations of projectors and display surfaces. While this results in rendering simplicity and speed, it also means painstaking construction and ongoing maintenance. In previously published work, we introduced a vision of projector-based displays constructed(More)
Our HiBall Tracking System generates over 2000 head-pose estimates per second with less than one millisecond of latency, and less than 0.5 millimeters and 0.02 degrees of position and orientation noise, everywhere in a 4.5 by 8.5 meter room. The system is remarkably responsive and robust, enabling VR applications and experiments that previously would have(More)