Greg Ver Steeg

Learn More
Recent research has explored the increasingly important role of social media by examining the dynamics of individual and group behavior, characterizing patterns of information diffusion, and identifying influential individuals. In this paper we suggest a measure of causal relationships between nodes based on the information--theoretic notion of transfer(More)
The fundamental building block of social influence is for one person to elicit a response in another. Researchers measuring a "response" in social media typically depend either on detailed models of human behavior or on platform-specific cues such as re-tweets, hash tags, URLs, or mentions. Most content on social networks is difficult to model because the(More)
We demonstrate that a popular class of nonparametric mutual information (MI) estimators based on k-nearest-neighbor graphs requires number of samples that scales exponentially with the true MI. Consequently, accurate estimation of MI between two strongly dependent variables is possible only for prohibitively large sample size. This important yet overlooked(More)
We introduce a method to learn a hierarchy of successively more abstract representations of complex data based on optimizing an information-theoretic objective. Intuitively, the optimization searches for a set of latent factors that best explain the correlations in the data as measured by multivariate mutual information. The method is unsupervised, requires(More)
Estimating Mutual Information by Local Gaussian Approximation Report Title Estimating mutual information (MI) from samples is a fundamental problem in statistics, machine learning, and data analysis. Recently it was shown that a popular class of non-parametric MI estimators perform very poorly for strongly dependent variables and have sample complexity that(More)
The focus of this work is on developing probabilistic models for temporal activity of users in social networks (e.g., posting and tweeting) by incorporating the social network influence as perceived by the user. Although prior work in this area has developed sophisticated models for user activity, these models either ignore social network influence(More)
We consider a range of “theories” that violate the uncertainty relation for anti-commuting observables derived in [JMP, 49, 062105 (2008)]. We first show that Tsirelson’s bound for the CHSH inequality can be derived from this uncertainty relation, and that relaxing this relation allows for non-local correlations that are stronger than what can be obtained(More)