Learn More
Central mechanisms of sensory gating were assessed in Sprague-Dawley rats by an evoked potential technique similar to one that we have previously used to show diminished sensory gating in psychotic patients. Middle latency (15-50 msec) auditory evoked potential responses were recorded at the skull in unanesthetized freely moving animals. Gating mechanisms(More)
Studies have shown that peripheral levels of corticosterone correlate with the magnitudes of two well-described physiological models of memory, long-term potentiation (LTP) and primed burst (PB) potentiation. In the present experiments, the authors investigated the effects of experimenter-controlled manipulations of the levels of corticosterone on the(More)
One function of the hippocampus is to ascertain the novelty of incoming sensations and encode significant new information into memory. The regulation of response to repeated stimuli may prevent overloading of this function by redundant sensory input. Recent pharmacological studies implicate the role of alpha-bungarotoxin-sensitive nicotinic cholinergic(More)
This series of studies investigated the effects of predator exposure on working memory in rats trained on the radial arm water maze (RAWM). The RAWM is a modified Morris water maze that contains four or six swim paths (arms) radiating out of an open central area, with a hidden platform located at the end of one of the arms. The hidden platform was located(More)
The effect of two types of electrical stimulation designed to induce long-lasting plasticity of the Schaffer/commissural inputs to CA1 pyramidal neurons was investigated using in vitro hippocampal slices made from young (3-6 month) and old (24-27 month) Fischer 344 rats. The first stimulation paradigm, primed burst (PB) stimulation, consisted of a total of(More)
Prolonged treatment with stress levels of corticosterone has been reported to produce changes in the hippocampus. In the experiments reported here, we examined for functional and morphological consequences of this treatment. First, young adult or mid-aged male Long-Evans rats were treated for either 1 or 3 months with corticosterone, at a dose sufficient to(More)
Dopaminergic and noradrenergic mediation of central sensory gating were assessed in Sprague-Dawley rats using a condition-test paradigm in which auditory evoked potentials were recorded. In this paradigm, unmedicated rats 'gate', i.e. suppress the response to the second of a pair of clicks delivered at a 0.5 s interval. Amphetamine-treated rats fail to(More)
Stress blocks hippocampal primed-burst potentiation, a low threshold form of long-term potentiation, thereby suggesting that stress should also impair hippocampal-dependent memory. Therefore, the effects of stress on working (hippocampal-dependent) and reference (hippocampal-independent) memory were evaluated. Rats foraged for food in seven arms of a 14-arm(More)
Primed burst (PB) potentiation is a long-term increase in CA1 population spike amplitude produced by brief physiologically patterned electrical stimulation of the hippocampal commissure. Exposure of rats to a novel environment resulted in a blockade of short-term (Post-tetanic potentiation, PTP) and long-term (PB potentiation) plasticity in all cases (n =(More)
A pattern of electrical stimulation based on 2 prominent physiological features of the hippocampus, complex spike discharge and theta rhythm, was used to induce lasting increases in responses recorded in area CA1 of hippocampal slices maintained in vitro and from the hippocampus of behaving rats. This effect, termed primed burst (PB) potentiation, was(More)