Learn More
A bold new effort to disrupt every gene in the mouse genome necessitates systematic, interdisciplinary approaches to analyzing patterning defects in the mouse embryo. We present a novel, rapid, and inexpensive method for obtaining high-resolution virtual histology for phenotypic assessment of mouse embryos. Using osmium tetroxide to differentially stain(More)
Contrast-enhanced small-animal computed tomography is an economical and highly quantitative tool for serially examining tumor development in situ, for analyzing the network of blood vessels that nourish them, and for following the response of tumors to preclinical therapeutic intervention(s). We present practical considerations for visualizing the vascular(More)
In this paper we introduce a numerical procedure for performing dynamic data driven simulations (DDDAS). The main ingredient of our simulation is the multiscale interpolation technique that maps the sensor data into the solution space. We test our method on various synthetic examples. In particular we show that frequent updating of the sensor data in the(More)
Forward and reverse genetics now allow researchers to understand embryonic and postnatal gene function in a broad range of species. Although some genetic mutations cause obvious morphological change, other mutations can be more subtle and, without adequate observation and quantification, might be overlooked. For the increasing number of genetic model(More)
Biomedical applications of small animal imaging are creating exciting opportunities to extend the scientific impact of visualization research. Specifically, the effective pairing of non-linear image filtering and direct volume rendering is one strategy for scientists to quickly explore and understand the volumetric scans of their specimens. Microscopic(More)
We describe a virtual telemetry system that allows us to devise and augment dynamic data-driven application simulations (DDDAS). Virtual telemetry has the advantage that it is inexpensive to produce from real time simulations and readily transmittable using open source streaming software. Real telemetry is usually expensive to receive (if it is even(More)
We describe, devise, and augment dynamic data-driven application simulations (DDDAS). DDDAS offers interesting computational and mathematically unsolved problems. In this paper, we discuss how to update the solution as well as input parameters involved in the simulation based on local measurements. The updates are performed in time. We test our method on(More)