Learn More
It is demonstrated that, for high-Fresnel-number focusing systems illuminated by certain classes of partially coherent light, it is possible to produce a local minimum of intensity at the geometrical focus. Such an effect is possible even though the average intensity in the entrance plane of the lens is uniform. An explanation is offered for this effect,(More)
The intensity and the state of coherence are examined in the focal region of a converging, partially coherent wave field. In particular, Bessel-correlated fields are studied in detail. It is found that it is possible to change the intensity distribution and even to produce a local minimum of intensity at the geometrical focus by altering the coherence(More)
Some published computational work has suggested that partially coherent beams may be less susceptible to distortions caused by propagation through random media than fully coherent beams. In this paper this suggestion is studied quantitatively by examining the mean squared width of partially coherent beams in such media as a function of the propagation(More)
We analyze the coherence properties of a partially coherent field emerging from two pinholes in an opaque screen and show that the spectral degree of coherence possesses phase singularities on certain surfaces in the region of superposition. To our knowledge, this is the first illustration of the singular behavior of the spectral degree of coherence, and(More)
We present an experimental and theoretical study of the optical transmission of a thin metal screen perforated by two subwavelength slits, separated by many optical wavelengths. The total intensity of the far-field double-slit pattern is shown to be reduced or enhanced as a function of the wavelength of the incident light beam. This modulation is attributed(More)
The anomalously-high transmission of light through subwavelength apertures is a phenomenon which has been observed in numerous experiments, but whose theoretical explanation is incomplete. In this article we present a numerical analysis of the power fl ow (characterized by the Poynting vector)of the electromagnetic fi eld near a sub-wavelength sized slit in(More)
It is shown that remarkable spectral changes take place in the neighborhood of phase singularities near the focus of a converging, spatially fully coherent polychromatic wave diffracted at an aperture. In particular, when the spectrum of the wave in the aperture consists of a single line with a narrow Gaussian profile, the spectrum near a phase singularity(More)
The relationship between computed tomography (CAT) and diffraction tomography (DT) is investigated. A simple condition with a clear physical meaning is derived for the applicability of CAT. Corrections due to scattering are incorporated into CAT, and it is shown that the effect of scattering may be characterized by a two-dimensional fractional Fourier(More)