Learn More
To study the mechanisms of branchial acid-base regulation, Pacific spiny dogfish were infused intravenously for 24 h with either HCl (495+/- 79 micromol kg(-1) h(-1)) or NaHCO(3) (981+/-235 micromol kg(-1) h(-1)). Infusion of HCl produced a transient reduction in blood pH. Despite continued infusion of acid, pH returned to normal by 12 h. Infusion of(More)
Exposure of adult brown bullheads Ictalurus nebulosus (120–450 g) to environmental hypercapnia (2% carbon dioxide in air) and subsequent recovery caused transient changes in whole body net sodium flux (J net Na+ ) and net chloride flux (J net Cl- ) resulting largely from changes in whole body sodium influx (J in Na+ ) and chloride influx (J in Cl- ).(More)
This review examines the branchial mechanisms utilized by freshwater fish to regulate internal acid-base status and presents a model to explain the underlying basis of the compensatory processes. Rainbow trout, Oncorhynchus mykiss, and brown bullhead, Ictalurus nebulosus, were examined under a variety of experimental treatments which induced respiratory and(More)
A magnetic cell separation technique (MACS) was developed for isolating and characterizing peanut lectin agglutinin positive (PNA(+)) cells from rainbow trout gills. Percoll density separated mitochondria-rich (MR) cells were serially labeled with PNA-FITC and an anti-FITC antibody covalently coupled to a 50-nm iron particle and then applied to a magnetic(More)
Ion and acid-base regulating mechanisms have been studied at the fish gill for almost a century. Original models proposed for Na(+) and Cl(-) uptake, and their linkage with H(+) and HCO(3)(-) secretion have changed substantially with the development of more sophisticated physiological techniques. At the freshwater fish gill, two dominant mechanisms for(More)
Percoll density-gradient separation, combined with peanut lectin agglutinin (PNA) binding and magnetic bead separation, was used to separate dispersed fish gill cells into sub-populations. Functional characterization of each of the sub-populations was performed to determine which displayed acid-activated phenamil- and bafilomycin-sensitive Na(+) uptake.(More)
BACKGROUND AND PURPOSE Hyperosmotic mannitol therapy is widely used in the clinical setting for acute and subacute reduction in brain edema, to decrease muscle damage in compartment syndrome, and to improve renal perfusion. Though beneficial rheological effects commonly are attributed to mannitol, its direct effects on endothelial cells are poorly(More)
The Lake Magadi tilapia (Alcolapia grahami) is an unusual fish, excreting all its nitrogenous waste as urea because of its highly alkaline and buffered aquatic habitat. Here, using both physiological and molecular studies, we describe the mechanism of branchial urea excretion in this species. In vivo, repeated short-interval sampling revealed that urea(More)
The gill epithelium which comprises several types of cell faces multiple functions (O2/CO2 transfer, acid-base balance and ionic regulation). Little is known of the respective cellular localization of these functions. TEM examination of the catfish gill shows, in pavement cells, cytoplasmic vesicles and apical pits, both ornamented with studs reminiscent of(More)
Fluorescently labeled peanut lectin agglutinin (PNA-FITC) was used to identify a subtype of mitochondria-rich (MR) cells in the gills of freshwater rainbow trout. In situ binding of PNA-FITC was visualized by inverted fluorescence microscopy and found to bind to cells on the trailing edge of the filament epithelium as demonstrated by differential(More)