Learn More
In culture, hippocampal neurons develop a polarized form, with a single axon and several dendrites. Transecting the axons of hippocampal neurons early in development can cause an alteration of polarity; a process that would have become a dendrite instead becomes the axon (Dotti, C. G., and G. A. Banker. 1987. Nature (Lond.). 330:254-256). To investigate(More)
Outgrowth of distinct axonal and dendritic processes is essential for the development of the functional polarity of nerve cells. In cultures of neurons from the hippocampus, where the differential outgrowth of axons and dendrites is readily discernible, we have sought molecules that might underlie the distinct modes of elongation of these two types of(More)
Most synapses in the central nervous system exhibit a prominent electron-opaque specialization of the postsynaptic plasma membrane called the postsynaptic density (PSD). We have developed a procedure for the isolation of PSDs which is based on their buoyant density and their insolubility in N-lauroyl sarcosinate. Treatment of synaptic membranes with this(More)
Kinesin, a microtubule-based force-generating molecule, is thought to translocate organelles along microtubules. To examine the function of kinesin in neurons, we sought to suppress kinesin heavy chain (KHC) expression in cultured hippocampal neurons using antisense oligonucleotides and study the phenotype of these KHC "null" cells. Two different antisense(More)
GAP-43, a neuron specific growth-associated protein, is selectively distributed to the axonal domain in developing neurons; it is absent from dendrites and their growth cones. Using immunofluorescence microscopy, we have further examined the distribution of GAP-43 during the development of hippocampal neurons in culture, in order to determine when this(More)
Hippocampal neurons growing in culture initially extend several, short minor processes that have the potential to become either axons or dendrites. The first expression of polarity occurs when one of these minor processes begins to elongate rapidly, becoming the axon. Before axonal outgrowth, the growth-associated protein GAP-43 is distributed equally among(More)
We are interested in the relationship between the cytoskeleton and the organization of polarized cell morphology. We show here that the growth cones of hippocampal neurons in culture are specifically stained by a monoclonal antibody called 13H9. In other systems, the antigen recognized by 13H9 is associated with marginal bands of chicken erythrocytes and(More)
In time-lapse video recordings of hippocampal neurons in culture, we have identified previously uncharacterized structures, nicknamed "waves," that exhibit lamellipodial activity closely resembling that of growth cones, but which periodically emerge at the base of axons and travel distally at an average rate of 3 microm/min. In electron micrographs of(More)
Hippocampal neurons exhibit periodically recurring growth cone-like structures, referred to as "waves," that emerge at the base of neurites and travel distally to the tip. As a wave nears the tip, the neurite undergoes retraction, and when it reaches the tip, the neurite undergoes a burst of growth. At 1 day in culture, during early axon outgrowth, axons(More)