Grazziela Patrocinio Figueredo

Learn More
System dynamics and agent based simulation models can both be used to model and understand interactions of entities within a population. Our modeling work presented here is concerned with understanding the suitability of the different types of simulation for the immune system aging problems and comparing their results. We are trying to answer questions such(More)
In immune system simulation there are two competing simulation approaches: System Dynamics Simulation (SDS) and Agent-Based Simulation (ABS). In the literature there is little guidance on how to choose the best approach for a specific immune problem. Our overall research aim is to develop a framework that helps researchers with this choice. In this paper we(More)
Over the years, agent-based models have been developed that combine cell division and reinforced random walks of cells on a regular lattice, reaction-diffusion equations for nutrients and growth factors; and ordinary differential equations for the subcellular networks regulating the cell cycle. When linked to a vascular layer, this multiple scale model(More)
Many advances in research regarding immuno-interactions with cancer were developed with the help of ordinary differential equation (ODE) models. These models, however, are not effectively capable of representing problems involving individual localisation, memory and emerging properties, which are common characteristics of cells and molecules of the immune(More)
There is little research concerning comparisons and combination of System Dynamics Simulation (SDS) and Agent Based Simulation (ABS). ABS is a paradigm used in many levels of abstraction, including those levels covered by SDS. We believe that the establishment of frameworks for the choice between these two simulation approaches would contribute to the(More)
—An issue in text classification problems involves the choice of good samples on which to train the classifier. Training sets that properly represent the characteristics of each class have a better chance of establishing a successful predictor. Moreover, sometimes data are redundant or take large amounts of computing time for the learning process. To(More)
One issue in data classification problems is to find an optimal subset of instances to train a classifier. Training sets that represent well the characteristics of each class have better chances to build a successful predictor. There are cases where data are redundant or take large amounts of computing time in the learning process. To overcome this issue,(More)
Advances in healthcare and in the quality of life significantly increase human life expectancy. With the aging of populations, new un-faced challenges are brought to science. The human body is naturally selected to be well-functioning until the age of reproduction to keep the species alive. However, as the lifespan extends, unseen problems due to the body(More)
—In this position paper, we present ideas about creating a next generation framework towards an adaptive interface for data communication and visualisation systems. Our objective is to develop a system that accepts large data sets as inputs and provides user-centric, meaningful visual information to assist owners to make sense of their data collection. The(More)