Grazziela Patrocinio Figueredo

Learn More
Some common systems modelling and simulation approaches for immune problems are Monte Carlo simulations, system dynamics, discrete-event simulation and agent-based simulation. These methods, however, are still not widely adopted in immunology research. In addition, to our knowledge, there is few research on the processes for the development of simulation(More)
System dynamics and agent based simulation models can both be used to model and understand interactions of entities within a population. Our modeling work presented here is concerned with understanding the suitability of the different types of simulation for the immune system aging problems and comparing their results. We are trying to answer questions such(More)
This article proposes a new classifier inspired on a biological immune systems’ characteristic. This immune based predictor also belongs to the class of k-nearest-neighbors algorithms. Nevertheless, its main features, compared to other artificial immune classifiers, are the assumption that training set is the antibodies’ population and a suppression(More)
In immune system simulation there are two competing simulation approaches: System Dynamics Simulation (SDS) and Agent-Based Simulation (ABS). In the literature there is little guidance on how to choose the best approach for a specific immune problem. Our overall research aim is to develop a framework that helps researchers with this choice. In this paper we(More)
One issue in data classification problems is to find an optimal subset of instances to train a classifier. Training sets that represent well the characteristics of each class have better chances to build a successful predictor. There are cases where data are redundant or take large amounts of computing time in the learning process. To overcome this issue,(More)
We report on the details of the methodology applied to support shortlisting the nominees for the Microlise Driver of the Year awards. The aim was to recognise the United Kingdom's most talented heavy goods vehicle (HGV) drivers, with the list of top 46 drivers across 16 different companies determined through the analysis of telematics data. Initial data for(More)
Over the years, agent-based models have been developed that combine cell division and reinforced random walks of cells on a regular lattice, reaction-diffusion equations for nutrients and growth factors; and ordinary differential equations for the subcellular networks regulating the cell cycle. When linked to a vascular layer, this multiple scale model(More)
There is great potential to be explored regarding the use of agent-based modelling and simulation as an alternative paradigm to investigate early-stage cancer interactions with the immune system. It does not suffer from some limitations of ordinary differential equation models, such as the lack of stochasticity, representation of individual behaviours(More)
Many advances in research regarding immuno-interactions with cancer were developed with the help of ordinary differential equation (ODE) models. These models, however, are not effectively capable of representing problems involving individual localisation, memory and emerging properties, which are common characteristics of cells and molecules of the immune(More)
There is little research concerning comparisons and combination of System Dynamics Simulation (SDS) and Agent Based Simulation (ABS). ABS is a paradigm used in many levels of abstraction, including those levels covered by SDS. We believe that the establishment of frameworks for the choice between these two simulation approaches would contribute to the(More)