Grazyna Gorny

Learn More
BACKGROUND Rats given extended access to cocaine develop several symptoms of addiction, including a gradual escalation of drug intake, whereas rats given limited access do not. We asked here whether extended access to cocaine also produces drug-induced sensitization, a form of neurobehavioral plasticity implicated in addiction. METHODS Rats were given(More)
We studied the influence of cocaine use on the structure of neurons in brain regions that contribute to its rewarding effects by allowing rats to self-administer cocaine (0.33 mg/infusion) for 1 h a day for 1 month. Control animals were left undisturbed or allowed to work for food for the same period of time. After an additional 1 month drug-free period the(More)
In this review, various aspects of how environmental experience effects the structure of the cortex at different times in the age of the animal are summarized. The interactions of brain injury and sex on the age-dependent plastic changes in the cortex are also considered. Finally, we have attempted to reach some general conclusions that describe the effects(More)
We studied the effects of self-administered (SA) vs. experimenter-administered (EA) morphine on dendritic spines in the hippocampal formation (CA1 and dentate), nucleus accumbens shell (NAcc-s), sensory cortex (Par1 and Oc1), medial frontal cortex (Cg3), and orbital frontal cortex (AID) of rats. Animals in the SA group self-administered morphine in 2-h(More)
Drugs of abuse and many other kinds of experiences share the ability to alter the morphology of neuronal dendrites and spines, the primary site of excitatory synapses in the brain. We hypothesized, therefore, that exposure to psychostimulant drugs might influence later experience-dependent structural plasticity. We tested this hypothesis by treating rats(More)
Complex housing has been used widely as a model of experience-dependent change. Animals housed in complex environments typically show synaptogenesis throughout the sensory and motor cortex as well as the striatum and hippocampus, and thus it is generally assumed that such changes are likely to be found throughout the cerebrum. The purpose of the present(More)
The potential of repeated exposure to Delta(9)-tetrahydrocannabinol (Delta(9)-THC) to produce long-lasting changes in synaptic connections in a manner similar to other drugs of abuse was evaluated in Sprague-Dawley rats. For 12 days, rats received two i.p. injections per day (8 h apart) of vehicle, a low dose of Delta(9)-THC (0.5 mg/kg), or escalating doses(More)
Male and female Long-Evans hooded rats were placed in the complex environments for 3 months either at weaning (22 days), in young adulthood (120 days), or in senescence (24 months). The dendritic morphology of both the apical and basilar fields of layer III pyramidal cells was analyzed in both parietal and visual cortex. There were two novel results. First,(More)
We studied the long-term effects of amphetamine self-administration experience (or sucrose reward training) on dendritic morphology (spine density) in nucleus accumbens (Nacc), medial (MPC) and orbital prefrontal cortex (OFC), and hippocampus (CA1 and dentate). Independent groups of rats were trained under a continuous schedule of reinforcement to nose-poke(More)
The experiments described here show that the cavity left by midline frontal cortex removals at 10 days of age (P10) fills in with neural tissue. Similar changes are not found at earlier and later ages. This neuronal filling is blocked by prior pretreatment by administration of Bromodeoxyuridine (BrdU) on embryonic day 13. Administration of BrdU following(More)