Learn More
The microenvironment of solid tumors is characterized by a reactive stroma with an abundance of inflammatory mediators and leukocytes, dysregulated vessels and proteolytic enzymes. TAM, major players in the connection between inflammation and cancer, summarize a number of functions (e.g., promotion of tumor cell proliferation and angiogenesis, incessant(More)
The link between inflammation and cancer proposed more than a century ago by Rudolf Virchow, who noticed the infiltration of leukocytes in malignant tissues, has recently found a number of genetic and molecular confirmations. Experimental, clinical and epidemiological studies have revealed that chronic inflammation contributes to cancer progression and even(More)
Tumor-Associated Macrophages (TAMs) are abundantly present in the stroma of solid tumors and modulate several important biological processes, such as neoangiogenesis, cancer cell proliferation and invasion, and suppression of adaptive immune responses. Myeloid C-type lectin receptors (CLRs) constitute a large family of transmembrane carbohydrate-binding(More)
CX3CL1 or Fractalkine is a peculiar chemokine that can exist either in a soluble form, like all the other chemokines, and as a cell membrane molecule. CX3CL1 is one of the most expressed chemokines in the central nervous system, where it regulates the communication between neurons, glia and microglia. CX3CR1-expressing microglia may have an important role(More)
Tumor-Associated Macrophages (TAM) are key components of the reactive stroma of tumors. In most, although not all cancers, their presence is associated with poor patient prognosis. In addition to releasing cytokines and growth factors for tumor and endothelial cells, a distinguished feature of TAM is their high-rate degradation of the extra-cellular matrix.(More)
  • 1