Learn More
The cellular mechanisms giving rise to the enhanced excitability induced by prostaglandin E2 (PGE2) and carba prostacyclin (CPGI2) in embryonic rat sensory neurons were investigated using the whole cell patch-clamp recording technique. Exposing sensory neurons to 1 microM PGE2 produced a twofold increase in the number of action potentials elicited by a ramp(More)
This study examines whether changes in cGMP concentration initiated by illumination of frog rod photoreceptors occur rapidly enough to implicate cGMP as an intermediate between rhodopsin activation in the disc membrane and permeability changes in the plasma membrane. Previous studies using whole retinas or isolated outer segments have provided conflicting(More)
Treatment with proinflammatory prostaglandin E2 (PGE2) produced a transient sensitization of whole-cell currents elicited by the vanilloid capsaicin. The intracellular signaling pathways that mediate the initiation of this PGE2-induced sensitization of the capsaicin-elicited current in rat sensory neurons are not well established. Treatment with either(More)
Because nerve growth factor (NGF) is elevated during inflammation and is known to activate the sphingomyelin signalling pathway, we examined whether NGF and its putative second messenger, ceramide, could modulate the excitability of capsaicin-sensitive adult and embryonic sensory neurons. Using the whole-cell patch-clamp recording technique, exposure of(More)
To determine whether the sensitizing action of prostaglandins on sensory neurons are due to modulation of voltage-sensitive calcium channels (VSCC) we examined the effects of inhibiting these channels on PGE2-induced enhancement of evoked peptide release from isolated dorsal root ganglion neurons. The inhibitory effects of the VSCC blockers on stimulated(More)
1. The role of the cyclic AMP (cAMP) transduction cascade in mediating the prostaglandin E2 (PGE2)-induced decrease in potassium current (IK) was investigated in isolated embryonic rat sensory neurones using the whole-cell patch-clamp recording technique. 2. Exposure to 100 microM chlorophenylthio-adenosine cyclic 3', 5'-monophosphate (cpt-cAMP) or 1 microM(More)
Cyclic GMP has been implicated in controlling the light-regulated conductance of rod photoreceptors of the vertebrate retina. However, there is little direct evidence correlating changes in cGMP concentration with the light-regulated permeability mechanism in living cells. A preparation of intact frog rod outer segments suspended in a Ringer's medium(More)
The pharmacology of the cyclic GMP-activated current in rod photoreceptors is poorly understood, partly for a lack of suitable compounds with which to probe the conductance mechanism. The results described in this study characterize the capacity of the calcium channel antagonist, pimozide, to block this cyclic GMP-activated current in excised patches of rod(More)
Prostaglandin E(2) (PGE(2)) enhances the sensitivity of sensory neurons to various forms of noxious stimulation. This occurs, in part, by the suppression of a delayed rectifier-like potassium current in these neurons. However, the molecular identity of this current remains unclear. Recent studies demonstrated that a mutant mouse lacking a delayed rectifier(More)
Nerve Growth Factor (NGF) is produced by and affects a number of immune and inflammatory cells. As part of the inflammatory response, NGF directly or indirectly alters the sensitivity of small diameter sensory neurons that communicate noxious information. The question remains as to the receptors and intracellular signaling cascades that mediate this(More)