Learn More
Treatment with proinflammatory prostaglandin E2 (PGE2) produced a transient sensitization of whole-cell currents elicited by the vanilloid capsaicin. The intracellular signaling pathways that mediate the initiation of this PGE2-induced sensitization of the capsaicin-elicited current in rat sensory neurons are not well established. Treatment with either(More)
During dermal injury and the associated trauma a number of compounds are released that can mediate the inflammatory response. Determining the cellular mechanisms that initiate the inflammatory responses to acute keratinocyte damage is important for understanding the regulation of epidermal inflammation. The recently cloned vanilloid receptor-1 (VR1) is a(More)
The cellular mechanisms giving rise to the enhanced excitability induced by prostaglandin E2 (PGE2) and carba prostacyclin (CPGI2) in embryonic rat sensory neurons were investigated using the whole cell patch-clamp recording technique. Exposing sensory neurons to 1 microM PGE2 produced a twofold increase in the number of action potentials elicited by a ramp(More)
Nerve growth factor (NGF) can play a causal role in the initiation of hyperalgesia. Recent work demonstrates that NGF can act directly on nociceptive sensory neurons to augment their sensitivity to a variety of stimuli. Based on the existing literature, it is not clear whether this sensitization is mediated by the high-affinity TrkA receptor or the(More)
Nerve Growth Factor (NGF) is produced by and affects a number of immune and inflammatory cells. As part of the inflammatory response, NGF directly or indirectly alters the sensitivity of small diameter sensory neurons that communicate noxious information. The question remains as to the receptors and intracellular signaling cascades that mediate this(More)
Because nerve growth factor (NGF) is elevated during inflammation and is known to activate the sphingomyelin signalling pathway, we examined whether NGF and its putative second messenger, ceramide, could modulate the excitability of capsaicin-sensitive adult and embryonic sensory neurons. Using the whole-cell patch-clamp recording technique, exposure of(More)
  • G D Nicol
  • 1993
The pharmacology of the cyclic GMP-activated current in rod photoreceptors is poorly understood, partly for a lack of suitable compounds with which to probe the conductance mechanism. The results described in this study characterize the capacity of the calcium channel antagonist, pimozide, to block this cyclic GMP-activated current in excised patches of rod(More)
Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by tumor formation. People with NF1 also can experience more intense painful responses to stimuli, such as minor trauma, than normal. NF1 results from a heterozygous mutation of the NF1 gene, leading to decreased levels of neurofibromin, the protein product of the NF1 gene.(More)
1. The role of the cyclic AMP (cAMP) transduction cascade in mediating the prostaglandin E2 (PGE2)-induced decrease in potassium current (IK) was investigated in isolated embryonic rat sensory neurones using the whole-cell patch-clamp recording technique. 2. Exposure to 100 microM chlorophenylthio-adenosine cyclic 3', 5'-monophosphate (cpt-cAMP) or 1 microM(More)
Collapsin response mediator proteins (CRMPs) mediate signal transduction of neurite outgrowth and axonal guidance during neuronal development. Voltage-gated Ca(2+) channels and interacting proteins are essential in neuronal signaling and synaptic transmission during this period. We recently identified the presynaptic N-type voltage-gated Ca(2+) channel(More)