Learn More
Spontaneous contractions were recorded from the circular muscle layer at three sites along the isolated mouse colon. The interval between contractions was approximately 4.5 min. The mean duration of the contractions ranged from 26 sec in the distal colon to 45 sec in the proximal colon. Contractions migrating more than half the length of the colon were(More)
1. Intracellular microelectrodes have been used to record the electrical activity of smooth muscle cells of the circular layer from full length strips of mouse colon in vitro. The membrane potential was unstable and showed slow depolarizations (mean amplitude, 10.9 mV; mean frequency, 0.008 Hz; mean duration, 56.4 s). 2. A variable number (mean fifty-six)(More)
Intracellular microelectrodes were used to record electrically evoked inhibitory junction potentials (IJPs) and electrotonic potentials during spontaneous cyclical depolarisations (myoelectric complexes, MCs) in the circular muscle layer of mouse colon in vitro. In the presence of nifedipine (1-2 microM) and atropine (1 microM), MCs were recorded every 264(More)
Intracellular electrophysiological techniques were used to record the spontaneous myoelectric activity in the circular muscle layer of an in vitro preparation of whole mouse colon. In 34 out of 58 preparations, spontaneous depolarisations (myoelectric complexes, MCs) were recorded cyclically, about every 4 min. In these preparations, apamin (250 nM) and(More)
1. Electrotonic potentials were recorded from the superficial smooth muscle cells of the guinea-pig vas deferens using the method of Abe & Tomita (1968), in response to low-amplitude, long-duration (greater than or equal to 2 sec) pulses. 2. Averaging techniques were used to increase the signal/noise ratio, and the intracellularly recorded electrotonic(More)
1. Contractions of the mouse vas deferens in response to electrical stimulation differ form those recorded form the guinea-pig vas deferens in that they are abolished by tetrodotoxin. 2. Changes in membrane potentials were recorded form the smooth muscle of both preparations in response to stimulation with current pulses applied by an intracellular(More)
Smooth muscle cells enzymatically dispersed from the circular muscle layer of the guinea pig colon were examined for the expression of voltage-gated ionic currents using the whole cell patch-clamp technique. Three outward currents and one inward current were identified and characterized. The inward current, at physiological potentials, was generated by a(More)
The hypothesis that spontaneous depolarisations (myoelectric complexes, MCs) can occur in the absence of neuronal activity, depending on the level of the membrane potential, was systematically studied. In control Krebs' solution, MCs were recorded approximately every 5 min and were abolished by tetrodotoxin (TTX, 1.6 microM). However, TTX also induced(More)
Intracellular recordings have been made in vitro from the myenteric neurons of the distal colon of normal littermates of the piebald-lethal mouse. Out of a total of 90 neurons, 82 were classified as S/type 1 cells and 8 as AH/type 2 cells. Seventy-eight out of 82 S cells showed spontaneous fast excitatory postsynaptic potentials (EPSPs) sensitive to(More)
1. The membrane conductance changes underlying the membrane hyperpolarizations induced by nitric oxide (NO), S-nitroso-L-cysteine (NC) and sodium nitroprusside (SNP) were investigated in the circular smooth muscle cells of the guinea-pig proximal colon, by use of standard intracellular microelectrode recording techniques. 2. NO (1%), NC (2.5-25 microM) and(More)