Graham L. W. Cross

Learn More
A large magnetoresistance (MR) effect of few-layers graphene between two non-magnetic metal electrodes with current perpendicular to graphene plane is studied. A non-saturation and anisotropic MR with the value over 60% at 14 T is observed in a two-layer graphene stack at room temperature. The resistance of the device is only tens of ohms, having the(More)
This work describes the heat transfer process from a heated microcantilever to a substrate. A platinum-resistance thermometer with a 140 nm width was fabricated on a SiO2-coated silicon substrate. The temperature coefficient of resistance estimated from the measurement was 7 10 4 K 1, about one-fifth of the bulk value of platinum. The temperature(More)
The squeezing of polymers in narrow gaps is important for the dynamics of nanostructure fabrication by nanoimprint embossing and the operation of polymer boundary lubricants. We measured stress versus strain behavior while squeezing entangled polystyrene films to large strains. In confined conditions where films were prepared to a thickness less than the(More)
UNLABELLED Controlling the cell-substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular functions. However, it is still unclear whether surface topography(More)
We report on the first controlled alternation between memory and threshold resistance switching (RS) in single Ni/NiO core-shell nanowires by setting the compliance current (I(CC)) at room temperature. The memory RS is triggered by a high I(CC), while the threshold RS appears by setting a low I(CC), and the Reset process is achieved without setting a I(CC).(More)
massless Dirac fermions, [ 3 ] extremely high mobility, [ 4 ] special quantum Hall effect, [ 3 ] and gate voltage tunable optical transitions. [ 5 ] Those remarkable electrical and optical properties make it an attractive candidate for potential applications in integrated bipolar fi eld-effect transistors (FETs), [ 6 ] transparent electrodes for solar(More)
Spatially localized stress fields produced by instrumented, sharp indentation probes are a route to testing the mechanical properties of materials at the smallest length scales. Here we provide direct experimental measurement of indentation plasticity with contact strain fields involving up to a few thousand atoms. We observe two types of nanoscale(More)
Graphene and related two-dimensional materials have shown unusual and exceptional mechanical properties, with similarities to origami-like paper folding and kirigami-like cutting demonstrated. For paper analogues, a critical difference between macroscopic sheets and a two-dimensional solid is the molecular scale of the thin dimension of the latter, allowing(More)
We introduce a simple, resist-free dry etch mask for producing patterns in diamond, both bulk and thin deposited films. Direct gallium ion beam exposure of the native diamond surface to doses as low as 10 cm forms a top surface hard mask resistant to both oxygen plasma chemical dry etching and, unexpectedly, argon plasma physical dry etching. Gallium(More)
We investigate the chemical composition and mechanical properties of plasma-deposited hydroxyapatite on grit-blasted Ti-6Al-4V coupons as models of typical prosthetic hip implants. Nanoindentation is used to extract the mechanical properties of the hydroxyapatite (HA) coating and to evaluate the behavior of the material as a function of distance from the(More)