Learn More
A large magnetoresistance (MR) effect of few-layers graphene between two non-magnetic metal electrodes with current perpendicular to graphene plane is studied. A non-saturation and anisotropic MR with the value over 60% at 14 T is observed in a two-layer graphene stack at room temperature. The resistance of the device is only tens of ohms, having the(More)
The squeezing of polymers in narrow gaps is important for the dynamics of nanostructure fabrication by nanoimprint embossing and the operation of polymer boundary lubricants. We measured stress versus strain behavior while squeezing entangled polystyrene films to large strains. In confined conditions where films were prepared to a thickness less than the(More)
We report on the first controlled alternation between memory and threshold resistance switching (RS) in single Ni/NiO core-shell nanowires by setting the compliance current (I(CC)) at room temperature. The memory RS is triggered by a high I(CC), while the threshold RS appears by setting a low I(CC), and the Reset process is achieved without setting a I(CC).(More)
The mechanical patterning of thin films has received recent attention due to significant potential for efficient nanostructure fabrication. For solid films, mechanically thinning wide areas remains particularly challenging. In this work, we introduce a new plastic ratchet mechanism involving small amplitude (<10 nm), oscillatory shear motion of the forging(More)
UNLABELLED Controlling the cell-substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular functions. However, it is still unclear whether surface topography(More)
Spatially localized stress fields produced by instrumented, sharp indentation probes are a route to testing the mechanical properties of materials at the smallest length scales. Here we provide direct experimental measurement of indentation plasticity with contact strain fields involving up to a few thousand atoms. We observe two types of nanoscale(More)
AIM Topographically modified substrates are increasingly used in tissue engineering to enhance biomimicry. The overarching hypothesis is that topographical cues will control cellular response at the cell-substrate interface. MATERIALS & METHODS The influence of anisotropically ordered poly(lactic-co-glycolic acid) substrates (constant groove width of(More)
Graphene and related two-dimensional materials have shown unusual and exceptional mechanical properties, with similarities to origami-like paper folding and kirigami-like cutting demonstrated. For paper analogues, a critical difference between macroscopic sheets and a two-dimensional solid is the molecular scale of the thin dimension of the latter, allowing(More)