Graham J King

Learn More
We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and(More)
Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus(More)
Microsatellites have emerged as an important system of molecular markers. We evaluated the potential of microsatellites for use in genetic studies of peach [Prunus persica (L.) Batsch]. Microsatellite loci in peach were identified by screening a pUC8 genomic library, a λZAPII leaf cDNA library, as well as through database searches. Primer sequences for the(More)
We describe the construction of a reference genetic linkage map for the Brassica A genome, which will form the backbone for anchoring sequence contigs for the Multinational Brassica rapa Genome Sequencing Project. Seventy-eight doubled haploid lines derived from anther culture of the F1 of a cross between two diverse Chinese cabbage (B. rapa ssp.(More)
A set of 109 microsatellite primer pairs recently developed for peach and cherry have been studied in the almond × peach F2 progeny previously used to construct a saturated Prunus map containing mainly restriction fragment length polymorphism markers. All but one gave amplification products, and 87 (80%) segregated in the progeny and detected 96 loci. The(More)
Genetical maps of molecular markers in two very different F1-derived doubled-haploid populations of Brassica oleracea are compared and the first integrated map described. The F1 crosses were: Chinese kale×calabrese (var. alboglabra×var. italica) and cauliflower×Brussels sprout (var. botrytis×var. gemmifera). Integration of the two component maps using(More)
 Linkage maps for the apple cultivars ‘Prima’ and ‘Fiesta’ were constructed using RFLP, RAPD, isozyme, AFLP, SCAR and microsatellite markers in a ‘Prima’בFiesta’ progeny of 152 individuals. Seventeen linkage groups, putatively corresponding to the seventeen haploid apple chromosomes, were obtained for each parent. These maps were aligned using 67(More)
Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of(More)
The large number of genetic linkage maps representing Brassica chromosomes constitute a potential platform for studying crop traits and genome evolution within Brassicaceae. However, the alignment of existing maps remains a major challenge. The integration of these genetic maps will enhance genetic resolution, and provide a means to navigate between(More)
Brassica oleracea is a valuable vegetable species that has contributed to human health and nutrition for hundreds of years and comprises multiple distinct cultivar groups with diverse morphological and phytochemical attributes. In addition to this phenotypic wealth, B. oleracea offers unique insights into polyploid evolution, as it results from multiple(More)