Graham Healy

Learn More
Interactive image segmentation is extensively used in photo editing when the aim is to separate a foreground object from its background so that it is available for various applications. The goal of the interaction is to get an accurate segmentation of the object with the minimal amount of human effort. To improve the usability and user experience using(More)
Recent proof-of-concept research has appeared showing the applicability of Brain Computer Interface (BCI) technology in combination with the human visual system, to classify images. The basic premise here is that images that arouse a participant’s attention generate a detectable response in their brainwaves, measurable using an electroencephalograph (EEG).(More)
This technical report will detail the activities of the Curiosity Cloning project conducted at Dublin City University (DCU) in conjunction with the Advanced Concepts Team (ACT), funded through the European Space Agencies (ESA) Ariadna scheme. The primary objective of this project was the utilization of a cheap, commodity Electroencephalography (EEG) device(More)
Typically BCI (Brain Computer Interfaces) are found in rehabilitative or restorative applications, often allowing users a medium of communication that is otherwise unavailable through conventional means. Recently, however, there is growing interest in using BCI to assist users in searching for images. A class of neural signals often leveraged in common BCI(More)
This paper explores the potential of brain-computer interfaces in segmenting objects from images. Our approach is centered around designing an effective method for displaying the image parts to the users such that they generate measurable brain reactions. When an image region, specifically a block of pixels, is displayed we estimate the probability of the(More)
Current mainstream audio playback  paradigms do not take any account of a user's physical location or orientation in the delivery of audio through headphones or speakers. Thus audio is usually presented as a static perception whereby it is naturally a dynamic 3D phenomenon audio environment. It fails to take advantage of our innate(More)
The rapid serial visual presentation (RSVP) paradigm is a method that can be used to extend the P300 based brain computer interface (BCI) approach to enable high throughput target image recognition applications. The method requires high temporal resolution and hence, generating reliable and accurate stimulus triggers is critical for high performance(More)
This paper extends our previous work on the potential of EEG-based brain computer interfaces to segment salient objects in images. The proposed system analyzes the Event Related Potentials (ERP) generated by the rapid serial visual presentation of windows on the image. The detection of the P300 signal allows estimating a saliency map of the image, which is(More)