Learn More
The beta-chemokines MIP-1alpha, MIP-1beta and RANTES inhibit infection of CD4+ T cells by primary, non-syncytium-inducing (NSI) HIV-1 strains at the virus entry stage, and also block env-mediated cell-cell membrane fusion. CD4+ T cells from some HIV-1-exposed uninfected individuals cannot fuse with NSI HIV-1 strains and secrete high levels of(More)
The bicyclam AMD3100 (formula weight 830) blocks HIV-1 entry and membrane fusion via the CXCR4 co-receptor, but not via CCR5. AMD3100 prevents monoclonal antibody 12G5 from binding to CXCR4, but has no effect on binding of monoclonal antibody 2D7 to CCR5. It also inhibits binding of the CXC-chemokine, SDF-1alpha, to CXCR4 and subsequent signal transduction,(More)
The beta-chemokine receptor CCR-5 is an essential co-factor for fusion of HIV-1 strains of the non-syncytium-inducing (NSI) phenotype with CD4+ T-cells. The primary binding site for human immunodeficiency virus (HIV)-1 is the CD4 molecule, and the interaction is mediated by the viral surface glycoprotein gp120 (refs 6, 7). The mechanism of CCR-5 function(More)
The CC-chemokine receptor CCR5 is required for the efficient fusion of macrophage (M)-tropic human immunodeficiency virus type 1 (HIV-1) strains with the plasma membrane of CD4+ cells and interacts directly with the viral surface glycoprotein gp120. Although receptor chimera studies have provided useful information, the domains of CCR5 that function for(More)
New HIV therapies are urgently needed to address the growing problem of drug resistance. In this article, we characterize the anti-HIV drug candidate 3-O-(3',3'-dimethylsuccinyl) betulinic acid (PA-457). We show that PA-457 potently inhibits replication of both WT and drug-resistant HIV-1 isolates and demonstrate that the compound acts by disrupting a late(More)
Expression of the pro-opiomelanocortin (POMC) gene was examined in normal human lymphocytes and lymphocyte cell lines infected by lymphotropic viruses. POMC gene transcripts were detected in human lymphocytes using stringent RNA-RNA hybridizations. Low transcript levels were found in normal phytohemagglutinin-stimulated peripheral blood mononuclear cells(More)
In this study, we evaluated baseline susceptibility to bevirimat (BVM), the first in a new class of antiretroviral agents, maturation inhibitors. We evaluated susceptibility to BVM by complete gag genotypic and phenotypic testing of 20 patient-derived human immunodeficiency virus type 1 isolates and 20 site-directed mutants. We found that reduced BVM(More)
In a continuing study of potent anti-HIV agents, seventeen 28,30-disubstituted betulinic acid (BA, 1) derivatives and seven novel 3,28-disubstituted BA analogues were designed, synthesized, and evaluated for in vitro antiviral activity. Among them, compound 21 showed an improved solubility and equal anti-HIV potency (EC(50) = 0.09 microM) when compared to(More)
The nuclear polyhedrosis virus of Mamestra brassicae has been studied in larval populations of the moth introduced into small plots of cabbages. Primary dispersal of virus from single foci of infected larvae resulted from enhanced movement of the larvae, which colonized new plants logarithmically. Virus growth within the host population was quantified, and(More)
Six 3-substituted 3',4'-di-O-(S)-camphanoyl-(+)-cis-khellactone derivatives (3-8) were synthesized from 3-methyl DCK (2). 3-Hydroxymethyl DCK (6) exhibited potent anti-HIV activity in H9 lymphocytes with EC(50) and TI values of 1.87 x 10(-4) microM and 1.89 x 10(5), respectively. These values are similar to those of DCK and better than those of AZT in the(More)