Learn More
Observations of neutral-current nu interactions on deuterium in the Sudbury Neutrino Observatory are reported. Using the neutral current (NC), elastic scattering, and charged current reactions and assuming the standard 8B shape, the nu(e) component of the 8B solar flux is phis(e) = 1.76(+0.05)(-0.05)(stat)(+0.09)(-0.09)(syst) x 10(6) cm(-2) s(-1) for a(More)
The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted 8B spectrum, the night minus day rate is 14.0%+/-6.3%(+1.5%)(-1.4%) of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the nu(e) asymmetry is(More)
We analyze the two-dimensional potential around a coated cylinder placed in a nonuniform field. In two special cases the system behaves as if the core of the cylinder were enlarged and the shell absent. These are when the shell dielectric constant is the negative of either the core dielectric constant or the matrix dielectric constant. When the shell(More)
For practical applications of variational bounds to the eeective properties of composite materials, the information available is often not that required by the formulas for the optimal bounds. It is therefore important to determine what can be said rigorously about various unknown material properties when some other properties are known. The key quantities(More)
In an electromagnetic cloak based on a transformation approach, reduced sets of material properties are generally favored due to their easier implementation in reality, although a seemingly inevitable drawback of undesired scattering exists in such cloaks. Here, the authors suggest the use of high-order transformations to create smooth moduli at the outer(More)
Discrete systems of infinitely long polarizable line dipoles are considered in the quasistatic limit, interacting with a two-dimensional cloaking system consisting of a hollow plasmonic cylindrical shell. A numerical procedure is described for accurately calculating electromagnetic fields arising in the quasistatic limit, for the case when the relative(More)
Metamaterials are constructed such that, for a narrow range of frequencies, the momentum density depends on the local displacement gradient, and the stress depends on the local velocity. In these models the momentum density generally depends not only on the strain, but also on the local rotation, and the stress is generally not symmetric. A variant is(More)
A new cloaking method is presented for 2D quasistatics and the 2D Helmholtz equation that we speculate extends to other linear wave equations. For 2D quasistatics it is proven how a single active exterior cloaking device can be used to shield an object from surrounding fields, yet produce very small scattered fields. The problem is reduced to finding a(More)