Graeme T. Swindles

Learn More
Tropical peatlands represent globally important carbon sinks with a unique biodiversity and are currently threatened by climate change and human activities. It is now imperative that proxy methods are developed to understand the ecohydrological dynamics of these systems and for testing peatland development models. Testate amoebae have been used as(More)
The use of volcanic ash layers for dating and correlation (tephrochronology) is widely applied in the study of past environmental changes. We describe the first cryptotephra (non-visible volcanic ash horizon) to be identified in the Amazon basin, which is tentatively attributed to a source in the Ecuadorian Eastern Cordillera (0-1°S, 78-79°W), some 500-600(More)
There has been recent debate over stratigraphic markers used to demarcate the Anthropocene from the Holocene Epoch. However, many of the proposed markers are found only in limited areas of the world or do not reflect human impacts on the environment. Here we show that spheroidal carbonaceous particles (SCPs), a distinct form of black carbon produced from(More)
Detrital zircon studies are providing new insights on the evolution of sedimentary basins but the role of sedimentary recycling remains largely undefined. In a broad region of northwestern North America, this contribution traces the pathway of detrital zircon sand grains from Proterozoic sandstones through Phanerozoic strata and argues for multi-stage(More)
Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat(More)
  • 1