Learn More
The mechanisms that regulate the enhanced skeletal muscle oxidative capacity observed when training with reduced carbohydrate (CHO) availability are currently unknown. The aim of the present study was to test the hypothesis that reduced CHO availability enhances p53 signaling and expression of genes associated with regulation of mitochondrial biogenesis and(More)
The aim of the present study was to test the hypothesis that acute high-intensity interval (HIT) running induces greater activation of signaling pathways associated with mitochondrial biogenesis compared with moderate-intensity continuous (CONT) running matched for work done. In a repeated-measures design, 10 active men performed two running protocols(More)
BACKGROUND Ultraviolet radiation (UVR) generates reactive oxygen species in skin that can play a role in skin damage, but reports about the photoprotective properties of oral antioxidant supplements are conflicting. OBJECTIVE We examined the ability of 2 lipid-soluble antioxidants, vitamin E and beta-carotene, to reduce markers of oxidative stress and(More)
Despite the performance concerns of dehydration in other sports, there are currently no data on the effects of rapid weight-loss on the physical and cognitive performance of jockeys in a sport-specific context. In a randomised crossover design, eight Great Britain (GB) male licensed jockeys were assessed for chest strength, leg strength, simulated riding(More)
Unlike muscles of young mice, skeletal muscles of old mice fail to recover completely following contraction-induced damage. The mechanisms by which this occurs are not fully understood. The ability of muscles of old mice to adapt following exercise by the increased production of heat shock proteins (HSPs) is blunted. Studies using transgenic mice have shown(More)
The objective of this study was to determine if prolonged exercise resulted in the appearance of cardiac troponin T (cTnT) in serum and whether this was associated with elevated levels of myocardial oxidative stress. Forty-five male Sprague–Dawley rats were randomized into four groups and killed before (PRE-EX), immediately (0HR), 2 (2HR) and 24 h (24HR)(More)
Production of reactive oxygen species (ROS) during muscle contractions is associated with muscle fatigue and damage in the short term and adaptive responses in the long term. When adaptation is inconsequential acute antioxidant supplementation may be able to attenuate muscle fatigue and damage to enhance performance. This study aimed to determine the(More)
The current study implemented a two-part design to (1) assess the vitamin D concentration of a large cohort of non-vitamin D supplemented UK-based athletes and 30 age-matched healthy non-athletes and (2) to examine the effects of 5000 IU · day(-1) vitamin D(3) supplementation for 8-weeks on musculoskeletal performance in a placebo controlled trial. Vitamin(More)
Exercise involving lengthening muscle actions, such as downhill running, results in delayed onset muscle soreness (DOMS), which may be attributable to reactive oxygen species (ROS). Although exercise causes oxidative stress, any link between ROS and DOMS remains speculative. There is emerging evidence to suggest that ROS play an important physiological(More)
The prevalence of seasonal variation in vitamin D status was examined in 20 FA Premier League soccer players residing at a latitude of 53°N. Serum 25-hydroxyvitamin D (25(OH)D) levels decreased (P < 0.001) between August (104.4 ± 21.1 nmol·L(-1), range 68-151) and December (51.0 ± 19.0 nmol·L(-1), range 22-86), such that levels for 65% of the sample were(More)