Graeme C. Wake

Learn More
Characterising circulatory dysfunction and choosing a suitable treatment is often difficult and time consuming, and can result in a deterioration in patient condition, or unsuitable therapy choices. A stable minimal model of the human cardiovascular system (CVS) is developed with the ultimate specific aim of assisting medical staff for rapid, on site(More)
BACKGROUND Critically ill patients are often hyperglycemic and extremely diverse in their dynamics. Consequently, fixed protocols and sliding scales can result in error and poor control. Tight glucose control has been shown to significantly reduce mortality in critical care. An improved physiological system model of the glucose-insulin dynamics of a(More)
Tight regulation of blood glucose can significantly reduce mortality in critical illness. Critically ill patients are extremely diverse in the dynamics of their hyperglycaemia. Hence, responses can vary significantly, due to variations in insulin levels, effective insulin utilization, glucose absorption and other factors. Consequently, fixed protocols and(More)
Most anti-cancer drugs in use today exert their effects by inducing a programmed cell death mechanism. This process, termed apoptosis, is accompanied by degradation of the DNA and produces cells with a range of DNA contents. We have previously developed a phase transition mathematical model to describe the mammalian cell division cycle in terms of cell(More)
Critically ill patients are often hyperglycemic and extremely diverse in their dynamics. Consequently, fixed protocols and sliding scales can result in error and poor control. A two-compartment glucose-insulin system model that accounts for time-varying insulin sensitivity and endogenous glucose removal, along with two different saturation kinetics is(More)
The global properties of the classical three-dimensional Lotka-Volterra two preyone predator and one prey-two predator systems, under the assumption that competition can be neglected, are analysed with the direct Lyapunov method. It is shown that, except for a pathological case, one species is always driven to extinction, and the system behaves(More)
Close control of blood glucose levels significantly reduces vascular complications in Type I diabetes. A control method for the automation of insulin infusion that utilizes emerging technologies in blood glucose biosensors is presented. The controller developed provides tighter, more optimal control of blood glucose levels, while accounting for variation in(More)
Agitation-sedation cycling in critically ill patients, characterized by oscillations between states of agitation and over-sedation, is damaging to patient health, and increases length of stay and healthcare costs. The mathematical model presented captures the essential dynamics of the agitation-sedation system for the first time, and is statistically(More)
OBJECTIVE To examine difficulties in sedation management in the critically ill patient and explore how a semi automated sedation controller can improve agitation control. To present recent work on measurements of agitation, dynamic systems modelling and control of patient agitation response. DATA SOURCES Articles and peer-reviewed studies identified(More)