Learn More
A method for the purification of yeast K+-activated aldehyde dehydrogenase is presented which can be completed in substantially less time than other published procedures. The enzyme has a different N-terminal amino acid from preparations previously reported, and other small differences in amino acid content. These differences may be the result of(More)
Following the criticism by Chock and Gutfreund [Chock, P.B. & Gutfreund, H. (1988) Proc. Natl. Acad. Sci. USA 85, 8870-8874], that our proposal of direct transfer of NADH between glycerol-3-phosphate dehydrogenase (alpha-glycerol phosphate dehydrogenase, alpha-GDH; EC and L-lactate dehydrogenase (LDH; EC was based on a misinterpretation(More)
Data from steady-state kinetic analysis of yeast K+-activated aldehyde dehydrogenase are consistent with a ternary complex mechanism. Evidence from alternative substrate analysis and product-inhibition studies supports an ordered sequence of substrate binding in which NAD+ is the leading substrate. A preincubation requirement for NAD+ for maximum activity(More)
The cellular concentration of enzymes of some major metabolic pathways, such as glycolysis, can approach millimolarity. This concentration of enzyme can catalyze in vitro rates which are 100-fold higher than maximum pathway flux. In an attempt to understand the need for such high enzyme concentration, an artificial metabolic pathway of five enzymes (apropos(More)
Univalent cation activators of aldehyde dehydrogenase have dual effects, both interpreted as cation-induced or -stabilized conformation changes. These two processes are differentiated by the time scales of their associated changes in activity. Using Tl+ as an activator, under certain conditions, the slower change in activity saturates at a Tl+ concentration(More)
The activity, stability and spectroscopic properties of yeast K+ -activated aldehyde dehydrogenase were measured at various times after removal from, and after returning to a solution containing K+. Enzyme activity is rapidly lost on removal of most of the K+ and rapidly regained if K+ is replaced immediately. These activity changes are slower than likely(More)
The ability of NADPH to compete for binding with other ligands of known affinity has been used to provide values for the Kd of NADPH with ferredoxin-NADP+ oxidoreductase (EC (FNR). When the competing ligand is procion red, which binds with a red-shift in spectrum, or Woodwards reagent K(N-ethyl-5-phenylisoxazolium 3'-sulfonate), which covalently(More)