Learn More
Expressed genes are scanned by translocating RNA polymerases, which sensitively detect DNA damage and initiate transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes lesions from the template DNA strands of actively transcribed genes. Human hereditary diseases that present a deficiency only in TCR are characterized by(More)
Irradiating the plasmid pSV2-gpt with UV (254 nm) doses up to 200 J m-2 caused a dose-dependent increase in the yield of Gpt+ transformants when the plasmid was introduced into human cells by calcium phosphate coprecipitation. UV doses greater than 1 kJ m-2 were required to reduce the efficiency of transformation below that obtained with unirradiated DNA.
We find a dramatic difference in the efficiency of removal of UV-induced pyrimidine dimers from the transcribed and nontranscribed strands of the dihydrofolate reductase (DHFR) gene in cultured hamster and human cells. In hamster cells, 80% of the dimers are removed from the transcribed strand in 4 hr, but little repair occurs in the nontranscribed strand(More)
UV-sensitive syndrome (UV(S)S) is a human DNA repair-deficient disease with mild clinical manifestations. No neurological or developmental abnormalities or predisposition to cancer have been reported. In contrast, Cockayne syndrome (CS) patients exhibit severe developmental and neurological defects, in addition to photosensitivity. The cellular and(More)
Transcription-coupled repair (TCR) is a subpathway of nucleotide excision repair (NER) that acts specifically on lesions in the transcribed strand of expressed genes. First reported in mammalian cells, TCR was then documented in Escherichia coli. In this organism, an RNA polymerase arrested at a lesion is displaced by the transcription repair coupling(More)
Patients with ultraviolet-sensitive syndrome (UV(S)S) are sensitive to sunlight, but present neither developmental nor neurological deficiencies. Complementation studies with hereditary DNA repair syndromes show that UV(S)S is distinct from all known xeroderma pigmentosum (XP) and Cockayne syndrome (CS) groups. UV(S)S cells exhibit some characteristics(More)
Photosensitivity in humans can result from defects in repair of light-induced DNA lesions, from photoactivation of chemicals (including certain medications) with sunlight to produce toxic mediators, and by immune reactions to sunlight exposures. Deficiencies in DNA repair and the processing of damaged DNA during replication and transcription may result in(More)
UV-sensitive syndrome (UV(S)S) is a recently-identified autosomal recessive disorder characterized by mild cutaneous symptoms and defective transcription-coupled repair (TC-NER), the subpathway of nucleotide excision repair (NER) that rapidly removes damage that can block progression of the transcription machinery in actively-transcribed regions of DNA.(More)
UV-sensitive syndrome (UV(S)S) is a human DNA repair-deficiency disorder with mild clinical manifestations. In contrast to other disorders with photosensitivity, no neurological or developmental abnormalities and no predisposition to cancer have been reported. The cellular and biochemical responses of UV(S)S and Cockayne syndrome (CS) cells to UV light are(More)
Transcription-coupled repair (TCR) is a pathway dedicated to the removal of damage from the template strands of actively transcribed genes. Although the detailed mechanism of TCR is not yet understood, it is believed to be triggered when a translocating RNA polymerase is arrested at a lesion or unusual structure in the DNA. Conventional assays for TCR(More)