Graciela B. Sala-Newby

Learn More
BACKGROUND Diabetes mellitus impairs endothelial cell (EC) function and postischemic reparative neovascularization by molecular mechanisms that are not fully understood. microRNAs negatively regulate the expression of target genes mainly by interaction in their 3' untranslated region. METHODS AND RESULTS We found that microRNA-503 (miR-503) expression in(More)
We previously observed that stimulation of vascular smooth muscle cell (VSMC) proliferation with growth factors is associated with dismantling of cadherin junctions and nuclear translocation of beta-catenin. In this study we demonstrate directly that growth factors stimulate beta-catenin/T-cell factor (TCF) signaling in primary VSMCs. To determine whether(More)
Neurotrophins (NTs) control neuron survival and regeneration. Recent research showed that NTs possess cardiovascular actions. In this study, we investigated the hypothesis that the NT nerve growth factor (NGF) prevents cardiomyocyte apoptosis. We demonstrated that cultured rat neonatal cardiomyocytes (RNCMs) produce NGF and express its trkA(More)
Proliferation of vascular smooth muscle cells (VSMCs) contributes to intimal thickening during atherosclerosis and restenosis. The cadherins are transmembrane proteins, which form cell-cell contacts and may regulate VSMC proliferation. In this study, N-cadherin protein concentration was significantly reduced by stimulation of proliferation with fetal calf(More)
Myocardial infarction (MI) is the leading cause of death worldwide. MicroRNAs regulate the expression of their target genes, thus mediating a plethora of pathophysiological functions. Recently, miRNA-24 emerged as an important but controversial miRNA involved in post-MI responses. Here, we aimed at clarifying the effect of adenovirus-mediate(More)
Diabetes impairs endothelial function and reparative neovascularization. The p75 receptor of neurotrophins (p75(NTR)), which is scarcely present in healthy endothelial cells (ECs), becomes strongly expressed by capillary ECs after induction of peripheral ischemia in type-1 diabetic mice. Here, we show that gene transfer-induced p75(NTR) expression impairs(More)
Plaque rupture underlies most myocardial infarctions. Plaques vulnerable to rupture have thin fibrous caps, an excess of macrophages over vascular smooth muscle cells, large lipid cores, and depletion of collagen and other matrix proteins form the cap and lipid core. Production of matrix metalloproteinases from macrophages is prominent in human plaques, and(More)
RATIONALE Studies in transgenic mice showed the key role of (Pim-1) (proviral integration site for Moloney murine leukemia virus-1) in the control of cardiomyocyte function and viability. OBJECTIVE We investigated whether Pim-1 represents a novel mechanistic target for the cure of diabetic cardiomyopathy, a steadily increasing cause of nonischemic heart(More)
OBJECTIVE An excess of metalloproteinases (MMPs) over tissue inhibitors of metalloproteinases (TIMPs) may favor atherosclerotic plaque rupture. We compared TIMP levels in nonfoamy and foam-cell macrophages (FCM) generated in vivo. METHODS AND RESULTS In vivo generated rabbit FCM exhibited 84% reduced TIMP-3 protein compared to nonfoamy macrophages, and(More)
OBJECTIVE Vascular smooth muscle cell (VSMC) apoptosis contributes to atherosclerotic plaque instability and myocardial infarction. Consequently, reducing VSMC apoptosis may be beneficial for reducing plaque instability and acute coronary events. We previously demonstrated that N-cadherin, a cell-cell adhesion molecule, reduces VSMC apoptosis in vitro. In(More)