Grace Xingxin Gao

Learn More
—Synchronized voltage and current phasor measurements provided by phasor measurement units (PMUs) have the potential to augment power system monitoring, control, and protection functions. PMUs use the Global Positioning System (GPS) to synchronize measurements across a wide geographical area. Unfortunately, low-received-power, unencrypted civil GPS signals(More)
—Redundant metering is frequently used to verify the integrity of billing data reported by advanced metering infrastructure, but the redundant measurement introduces a potential confidentiality leak. We propose a way to encode the redundant measurement at a bit rate below its entropy, so that it cannot be decoded from the encoded bits alone. In this way, we(More)
His current research interests include GNSS integrity and modernization. She obtained the Ph.D. degree in electrical engineering at Stanford University. Her current research interests include GNSS signal and code structures, GNSS receiver architectures, and interference mitigation. She has received the Institute of Navigation (ION) Early Achievement Award.(More)
The purpose of this study was to characterize the forces resulting from Harrington distraction of the spine in an experimental model of scoliosis in the rat, in order to establish both the similarity of this model to human scoliosis and identify potential force parameters that may be useful for clinical decision-making. Harrington distraction was performed(More)
With the launch of the compass-M1 satellite on 14 April 2007, China is set to become the latest entrant into global navigation satellite systems (GNSS). Understanding the interoperability and integration of the Chinese Compass with the current GNSS, namely the U.S. Global Positioning System (GPS), the European Galileo, and the Russian GLONASS, requires(More)
His current research interests include GNSS integrity and modernization. She obtained the Ph.D. degree in electrical engineering at Stanford University. Her current research interests include GNSS signal and code structures, GNSS receiver architectures, and interference mitigation. She has received the Institute of Navigation (ION) Early Achievement Award.(More)
He received his Ph.D. from Stanford and is currently working on the Wide Area Augmentation System (WAAS), defining future architectures to provide aircraft guidance, and working with the FAA and GPS Wing on assuring integrity on GPS III. Key early contributions include prototype development proving the feasibility of WAAS, significant contribution to WAAS(More)
current research interests include GNSS signal and code structures, GNSS receiver architectures, interference mitigation and GNSS signal error analysis. She received the Institute of Navigation (ION) Early Achievement Award in 2008. Haochen Tang is currently a Ph.D student in the Dept. of Aeronautics and Astronautics working in the GPS Lab of Stanford(More)
Her current research interests include Galileo signal and code structures, GNSS receiver architectures, and GPS modernization. which develops satellite navigation systems based on the Global Positioning System (GPS). He has been involved in the development of WAAS and LAAS for the FAA. Per has received the Kepler, Thurlow and Burka Awards from the ION for(More)