Grace Sophia Griesbach

Learn More
Voluntary exercise leads to an upregulation of brain-derived neurotrophic factor (BDNF) and associated proteins involved in synaptic function. Activity-induced enhancement of neuroplasticity may be considered for the treatment of traumatic brain injury (TBI). Given that during the first postinjury week the brain is undergoing dynamic restorative processes(More)
We have previously shown that voluntary exercise upregulates brain derived neurotrophic factor (BDNF) within the hippocampus and is associated with an enhancement of cognitive recovery after a lateral fluid percussion injury (FPI). In order to determine if BDNF is critical to this effect we used an immunoadhesin chimera (TrkB-IgG) that inactivates free(More)
Brain-derived neurotrophic factor (BDNF), its signal transduction receptor trkB, and its downstream effector, synapsin I, were measured in the hippocampus and occipital cortex of young animals after fluid-percussion brain injury (FPI). Isofluorane anaesthetized postnatal day 19 rats were subjected to a mild lateral FPI or sham injury. Rats were sacrificed(More)
We recently found that an exercise-induced increase in hippocampal brain-derived neurotrophic factor (BDNF) is dependent when exercise is initiated after traumatic brain injury (TBI). When voluntary exercise was delayed by 2 weeks after a mild fluid-percussion injury (FPI) in rats, an increase in BDNF and an improvement in behavioral outcome were observed.(More)
We have recently demonstrated that fluid percussion injury (FPI) sustained early in life prevents the neural plasticity response associated with rearing in an enriched environment (EE). In order to determine if this reduction in plasticity capacity is reflected in alterations in dendritic arborization, the present study examined dendritic changes in(More)
Traumatic brain injury (TBI) is most prevalent in children and young adults. The long-term effects of pediatric TBI include cognitive and behavioral impairments; however, over time, it is difficult to distinguish individual variability in intellect and behavior from sequelae of early injury. Postnatal day (PND) 19 rats underwent lateral fluid percussion(More)
Following traumatic brain injury (TBI), the brain undergoes a period of metabolic and neurochemical alterations that may compromise the reactivity of neuroplasticity-related molecular systems to physiological stimulation. In order to address the molecular mechanisms underlying plasticity following TBI and the effects of physical stimulation in the acute(More)
Prior work has shown that d-amphetamine (AMPH) treatment or voluntary exercise improves cognitive functions after traumatic brain injury (TBI). In addition, voluntary exercise increases levels of brain-derived neurotrophic factor (BDNF). The current study was conducted to determine how AMPH and exercise treatments, either alone or in combination, affect(More)
We investigated whether a learning impairment after a controlled cortical impact (CCI) injury was associated with alterations in molecules involved in synaptic plasticity and learning and memory. Adult male rats with moderate CCI to the left parietal cortex, tested in a Morris water maze (MWM) beginning at postinjury day 10, showed impaired cognitive(More)
  • G S Griesbach, A Amsel
  • Proceedings of the National Academy of Sciences…
  • 1998
These experiments observed the immediate and long-term effects of neonatal treatment with MK-801 on patterned single alternation (PSA), a form of nonspatial, memory-based learning. Rat pups were injected daily on postnatal days (PND) 7-19, with MK-801 (MK+) or the less active isomer of MK-801 (MK-) (0.25 mg/kg), and trained at either PND 22 or 60. Rats(More)