Grace Ruiting Lin

Learn More
The transcription factor ATF5 is expressed in cells of the embryonic and neonatal ventricular zone/subventricular zone (VZ/SVZ), and must be down-regulated for their differentiation into neurons and astrocytes. Here, we show that ATF5 plays a major role in directing oligodendrocyte development. ATF5 is expressed by oligodendrocyte precursors but is absent(More)
Gliogenesis in the mammalian CNS continues after birth, with astrocytes being generated well into the first two postnatal weeks. In this study, we have isolated an A2B5(+) astrocyte precursor (APC) from the postnatal rat forebrain, which is capable of differentiating into mature astrocytes in serum-free medium without further trophic support. Exposure to(More)
Oligodendrocytes are the myelinating cells of the central nervous system. Although the CNS possesses the ability to repair demyelinating insults, in certain cases, such as the chronic lesions found in multiple sclerosis, remyelination fails. Cycling cells capable of becoming oligodendrocytes have been identified in both the developing and the adult(More)
The control of reproductive function involves actions of sex steroids upon their nuclear receptors in the hypothalamus and preoptic area (POA). Whether hypothalamic hormone receptors change their expression in aging male mammals has not been extensively pursued, although such changes may underlie functional losses in reproductive physiology occurring with(More)
Porcupine is a component of the Wnt pathway which regulates cell proliferation, migration, stem cell self-renewal, and differentiation. The Wnt pathway has been shown to be dysregulated in a variety of cancers. Porcupine is a membrane bound O-acyltransferase that palmitoylates Wnt. Inhibiting porcupine blocks the secretion of Wnt and effectively inhibits(More)
  • 1