Grace Olusola Gbotosho

Learn More
This study investigated the association between Plasmodium falciparum chloroquine resistance transporter (pfcrt) T76 and P. falciparum multidrug resistance gene 1 (pfmdr1) Y86 alleles and in vivo amodiaquine (AQ) resistance, as well as the clearance of parasites harboring these two alleles in children treated with AQ in southwest Nigeria. One hundred one(More)
The use of artemisinin-based combination therapy (ACT) at the community level has been advocated as a means to increase access to effective antimalarial medicines by high risk groups living in underserved areas, mainly in sub-Saharan Africa. This strategy has been shown to be feasible and acceptable to the community. However, the parasitological(More)
CONTEXT The emergence and spread of Plasmodium falciparum-resistant parasites to nearly all available antimalarial drugs pose a threat to malaria control and necessitates the need to continue the search for new effective and affordable drugs. Ethnomedicine has been shown to be a potential source of antimalarial compounds or source of template for the(More)
We assessed Plasmodium falciparum mdr1 (Pfmdr1) gene polymorphisms and copy numbers as well as P. falciparum Ca(2+) ATPase (PfATPase6) gene polymorphisms in 90 Nigerian children presenting with uncomplicated falciparum malaria and enrolled in a study of the efficacy of artemether-lumefantrine (AL). The nested PCR-restriction fragment length polymorphism and(More)
Parasite genotyping by a polymerase chain reaction was used to distinguish recrudescent from newly acquired Plasmodium falciparum infections in 50 of 160 Nigerian children taking part in a chloroquine efficacy study in Ibadan, Nigeria. A finger prick blood sample was taken from each child before and after treatment to identify recrudescent parasites. By(More)
Chloroquine (CQ) resistance in Plasmodium falciparum has been associated with specific point mutations in the pfcrt and pfmdr-1 genes. In the present study, 30 children aged 1-12 years, who were all suffering from acute, uncomplicated, P. falciparum malaria in Ibadan, Nigeria, were evaluated to assess the association between these mutations and clinical(More)
Combination treatments, preferably containing an artemisinin derivative, are recommended to improve efficacy and prevent Plasmodium falciparum drug resistance. Artemether-lumefantrine (AL) and artesunate-amodiaquine (AA) are efficacious regimens that have been widely adopted in sub-Saharan Africa. However, most study designs ignore the effects of these(More)
The therapeutic efficacy and effects of artemether-lumefantrine (AL) and artesunate-amodiaquine co-formulated (AAcf) or co-packaged (AAcp) on malaria-associated anemia (MAA) were evaluated in 285 children < 12 years of age with uncomplicated Plasmodium falciparum malaria randomized to receive one of the three drug combinations. Fever and parasite clearance(More)
Human African trypanosomiasis is a neglected tropical disease with complex clinical presentation, diagnosis, and difficult treatment. The available drugs for the treatment of trypanosomiasis are old, expensive, and less effective, associated with severe adverse reactions and face the problem of drug resistance. This situation underlines the urgent need for(More)
BACKGROUND Artemisinin-based combination antimalarials are currently considered effective alternatives for the treatment of malaria in Africa, but there are few studies of such combinations in Nigerian children. We assessed the safety, treatment efficacy and effects on gametocyte carriage of the combination of artesunate plus amodiaquine and chloroquine(More)