Grace Ka Yan Chan

Learn More
In order to efficiently characterize both antiproliferative potency and mechanism of action of small molecules targeting the cell cycle, we developed a high-throughput image-based assay to determine cell number and cell cycle phase distribution. Using this we profiled the effects of experimental and approved anti-cancer agents with a range mechanisms of(More)
The JAK-STAT pathway mediates signaling by cytokines, which control survival, proliferation, and differentiation of a variety of cells. In recent years, a single point mutation (V617F) in the tyrosine kinase JAK2 was found to be present with a high incidence in myeloproliferative disorders (MPDs). This mutation led to hyperactivation of JAK2,(More)
The receptor tyrosine kinase c-Met is an attractive target for therapeutic blockade in cancer. Here, we describe MK-2461, a novel ATP-competitive multitargeted inhibitor of activated c-Met. MK-2461 inhibited in vitro phosphorylation of a peptide substrate recognized by wild-type or oncogenic c-Met kinases (N1100Y, Y1230C, Y1230H, Y1235D, and M1250T) with(More)
A great deal of information can be gained from kinetic fluorescence-based measurement of cellular responses; however, until recently the use of such approaches has been limited by the manual nature of the instrumentation available. Higher-throughput kinetic studies of signaling pathways are greatly facilitated by new confocal, liquid handling-enabled, high(More)
The prospect of manipulating endogenous neural stem cells to replace damaged tissue and correct functional deficits represents a novel mechanism for treating a variety of central nervous system disorders. Using human neural precursor cultures and a variety of assays for studying stem cell behavior we have screened two libraries of commercially available(More)
This paper describes the discovery and design of a novel class of JAK2 inhibitors. Furthermore, we detail the optimization of a screening hit using ligand binding efficiency and log D. These efforts led to the identification of compound 41, which demonstrates in vivo activity in our study.
Historically, only relatively low-throughput or expensive methods have been available to measure cell migration. Hepatocyte growth factor (HGF) is a ligand for the tyrosine kinase receptor Met that, in addition to mediating proliferation and survival, increases cell motility and metastasis. The authors have developed a high-throughput imaging assay for(More)
Pim kinases are promising targets for the development of cancer therapeutics. Among the three Pim isoforms, Pim-2 is particularly important in multiple myeloma, yet is the most difficult to inhibit due to its high affinity for ATP. We identified compound 1 via high throughput screening. Using property-based drug design and co-crystal structures with Pim-1(More)
Assessment of synergistic effects of drug combinations in vitro is a critical part of anticancer drug research. However, the complexities of dosing and analyzing two drugs over the appropriate range of doses have generally led to compromises in experimental design that restrict the quality and robustness of the data. In particular, the use of a single dose(More)
Robust and reliable methods for the manipulation of neural cell lines, by passaging, plating, dye labeling, imaging, fixation, and immunocytochemistry, are required to enable consistent, reproducible screens to be performed. We describe herein procedures and processes we have established to maximize the level of consistency of cell plating, fixation, and(More)