Learn More
In this study, we use in vivo microdialysis to investigate the influence of endogenous serotonin (5-HT) on striatal dopamine (DA) and 5-hydroxyidoleacetic acid (5-HIAA) efflux in both basal and activated conditions. The selective serotonin reuptake inhibitors citalopram and fluoxetine were used to mobilize endogenous 5-HT. In halothane-anaesthetized rats,(More)
Parkinson's disease is caused primarily by degeneration of brain dopaminergic neurons in the substantia nigra and the consequent deficit of dopamine in the striatum. Dopamine replacement therapy with the dopamine precursor l-dopa is the mainstay of current treatment. After several years, however, the patients develop l-dopa-induced dyskinesia, or abnormal(More)
The serotonin (5-hydroxytryptamine [5HT]) system has recently emerged as an important player in the appearance of l-3,4-dihydroxyphenylalanine (levodopa [l-dopa])-induced dyskinesia in animal models of Parkinson's disease. In fact, dopamine released as a false transmitter from serotonin neurons appears to contribute to the pulsatile stimulation of dopamine(More)
In vivo microdialysis and single-cell extracellular recordings were used to assess the involvement of serotonin(4) (5-HT(4)) receptors in the effects induced by morphine, amphetamine and cocaine on nigrostriatal and mesoaccumbal dopaminergic (DA) pathway activity. The increase in striatal DA release induced by morphine (2.5 mg/kg, s.c.) was significantly(More)
In this study we investigated, using in vivo microdialysis and single unit recordings, the role of serotonin4 (5-HT4) receptors in the control of nigrostriatal and mesoaccumbal dopaminergic (DA) pathway activity. In freely moving rats, the 5-HT4 antagonist GR 125487 (1 mg/kg, i.p.), without effect on its own, significantly reduced the enhancement of(More)
BACKGROUND The A11 diencephalospinal pathway is crucial for sensorimotor integration and pain control at the spinal cord level. When disrupted, it is thought to be involved in numerous painful conditions such as restless legs syndrome and migraine. Its anatomical organization, however, remains largely unknown in the non-human primate (NHP). We therefore(More)
During recent years, much attention has been devoted at investigating the modulatory role of central 5-HT(2C) receptors on dopamine (DA) neuron activity, and it has been proposed that these receptors modulate selectively DA exocytosis associated with increased firing of DA neurons. In the present study, using in vivo microdialysis in the nucleus accumbens(More)
We have associated behavioral, pharmacological, and quantitative immunohistochemical study in a rat analog of l-DOPA-induced dyskinesia to understand whether alterations in dopamine receptor fate in striatal neurons may be involved in mechanisms leading to movement abnormalities. Detailed analysis at the ultrastructural level demonstrates specific(More)
L-DOPA-induced dyskinesia (LID), a detrimental consequence of dopamine replacement therapy for Parkinson's disease, is associated with an alteration in dopamine D1 receptor (D1R) and glutamate receptor interactions. We hypothesized that the synaptic scaffolding protein PSD-95 plays a pivotal role in this process, as it interacts with D1R, regulates its(More)
In vivo microdialysis and single-cell extracellular recordings were used to assess the involvement of serotonin(2A) (5-HT(2A)) and serotonin(2C/2B) (5-HT(2C/2B)) receptors in the effects induced by amphetamine and morphine on dopaminergic (DA) activity within the mesoaccumbal and nigrostriatal pathways. The increase in DA release induced by amphetamine (2(More)