Grégory Éot-Houllier

Learn More
Histone deacetylase inhibitors (HDACIs) are a promising new class of anticancer drugs. However, their mechanism of action has not been fully elucidated. Most studies have investigated the effect of HDACIs on the regulation of gene transcription. HDAC inhibition also leads to genomic instability by a variety of mechanisms. This phenomenon, which has been(More)
PURPOSE To study the effect of hydration level and plasmid packing on strand break induction in DNA by ultrasoft X-ray. MATERIALS AND METHODS Bluescript (pBS, tight packing) and pSP189 (pSP, loose packing) plasmids were irradiated by 250, 380, and 760 eV ultrasoft X-rays at the Laboratoire pour l'Utilisation du Rayonnement Electromagnétique synchrotron(More)
Histone deacetylase inhibitors (HDACI) are powerful antiproliferative drugs, and are currently undergoing clinical trials as antitumor agents. It would be valuable for both cancer therapy and our knowledge of basic cellular processes to understand the mechanisms by which HDACIs block cell proliferation. Most current models postulate that HDACIs allow the(More)
We describe here the role of histone deacetylase 3 (HDAC3) in sister chromatid cohesion and the deacetylation of histone H3 Lys 4 (H3K4) at the centromere. HDAC3 knockdown induced spindle assembly checkpoint activation and sister chromatid dissociation. The depletion of Polo-like kinase 1 (Plk1) or Aurora B restored cohesion in HDAC3-depleted cells. HDAC3(More)
Bipolar spindle formation is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, abnormal number and structural organization of centrosomes can lead to loss of spindle bipolarity and genetic integrity. ASAP (aster-associated protein or MAP9) is a centrosome- and spindle-associated protein, the deregulation of(More)
Evidence has emerged that repair of clustered DNA lesions may be compromised, possibly leading to the formation of double-strand breaks (DSB) and, thus, to deleterious events. The first repair event occurring at a multiply damaged site (MDS) is of major importance and will largely contribute to the hazardousness of MDS. Here, using protein extracts from(More)
Clustered DNA lesions, possibly induced by ionizing radiation, constitute a trial for repair processes. Indeed, recent studies suggest that repair of such lesions may be compromised, potentially leading to the formation of lethal double-strand breaks (DSBs). A complex multiply damaged site (MDS) composed of 8-oxoguanine and 8-oxoadenine on one strand,(More)
  • 1