Grégoire Vincent

Learn More
Plant and bird diversity in the Indonesian jungle rubber agroforestry system was compared to that in primary forest and rubber plantations by integrating new and existing data from a lowland rain forest area in Sumatra. Jungle rubber gardens are low-input rubber (Hevea brasiliensis) agroforests that structurally resemble secondary forest and in which wild(More)
BACKGROUND AND AIMS The phenotypic plasticity of leaf life span in response to low resource conditions has a potentially large impact on the plant carbon budget, notably in evergreen species not subject to seasonal leaf shedding, but has rarely been well documented. This study evaluates the plasticity of leaf longevity, in terms of its quantitative(More)
BACKGROUND AND AIMS Morphogenetic plasticity may be as important as physiological plasticity in determining plant adaptability to changing environmental conditions. This study examines the importance of crown plasticity of trees in stands. METHODS A three-dimensional forest simulator is used to explore the impact of crown shape plasticity on tree growth.(More)
Various processes contribute to shaping the local assemblage of species in hyperdiverse tropical forest. The relative contribution of environmental factors and dispersal limitation in determining the spatial distribution of saplings at local scale is unclear. We examined two types of environmental factors: (a) soil type reflecting drainage regime and (b)(More)
While theoretical allometric models postulate universal scaling exponents, empirical relationships between tree dimensions show marked variability that reflects changes in the biomass allocation pattern. As growth of the various tree compartments may be controlled by different functions, it is hypothesized that they may respond differently to factors of(More)
Trees outside closed forest stands differ in the relation between stem diameter, height and crown volume from trees that grew with neighbours close by. Whether this plasticity in tree shape varies between species in relation to their light requirement is unknown. We purposefully sampled 528 trees ranging 5–100 cm diameter at breast height growing in a range(More)
The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35(More)
Airborne laser scanning provides continuous coverage mapping of forest canopy height and thereby is a powerful tool to scale-up above-ground biomass (AGB) estimates from stand to landscape. A critical first step is the selection of the plot variables which can be related to light detection and ranging (LiDAR) statistics. A universal approach was previously(More)
Across five biogeographic areas, DBH-CA allometry was characterized by inter-site homogeneity and intra-site heterogeneity, whereas the reverse was observed for DBH-H allometry. Tree crowns play a central role in stand dynamics. Remotely sensed canopy images have been shown to allow inferring stand structure and biomass which suggests that allometric(More)
BACKGROUND AND AIMS Morphological variation in light-foraging strategies potentially plays important roles in efficient light utilization and carbon assimilation in spatially and temporally heterogeneous environments such as tropical moist forest understorey. By considering a suite of morphological traits at various hierarchical scales, we examined the(More)