Grégoire Pierre Prévost

Learn More
The mechanisms involved in the epithelial to mesenchymal transition (EMT) are integrated in concert with master developmental and oncogenic pathways regulating in tumor growth, angiogenesis, metastasis, as well as the reprogrammation of specific gene repertoires ascribed to both epithelial and mesenchymal cells. Consequently, it is not unexpected that EMT(More)
PURPOSE Patient-derived xenograft models are considered to represent the heterogeneity of human cancers and advanced preclinical models. Our consortium joins efforts to extensively develop and characterize a new collection of patient-derived colorectal cancer (CRC) models. EXPERIMENTAL DESIGN From the 85 unsupervised surgical colorectal samples(More)
CDC25 dual-specificity phosphatases are essential regulators that dephosphorylate and activate cyclin-dependent kinase/cyclin complexes at key transitions of the cell cycle. CDC25 activity is currently considered to be an interesting target for the development of new antiproliferative agents. Here we report the identification of a new CDC25 inhibitor and(More)
PURPOSE The aim of these studies was to characterize the action of STX140 in a P-glycoprotein-overexpressing tumor cell line both in vitro and in vivo. In addition, its efficacy was determined against xenografts derived from patients who failed docetaxel therapy. EXPERIMENTAL DESIGN The effects of STX140, Taxol, and 2-methoxyestradiol (2-MeOE2) on cell(More)
The simultaneous activation of many distinct G protein-coupled receptors (GPCRs) and heterotrimeric G proteins play a major role in various pathological conditions. Pan-inhibition of GPCR signaling by small molecules thus represents a novel strategy to treat various diseases. To better understand such therapeutic approach, we have characterized the(More)
Metastasis and drug resistance are major problems in cancer chemotherapy. The purpose of this work was to analyze the molecular mechanisms underlying the invasive potential of drug-resistant colon carcinoma cells. Cellular models included the parental HT-29 cell line and its drug-resistant derivatives selected after chronic treatment with either(More)
Interactions between proteins of the Bcl-2 family play an important role in the regulation of apoptosis. Anti-apoptotic family members can heterodimerize with pro-apoptotic family members and antagonize their function, thus protecting against death. In cells protected from death by overexpression of Bcl-2 much of the Bax is present in Bax/Bcl-2(More)
Tubulin is a validated target for antitumor drugs. However, the effectiveness of these microtubule-interacting agents is limited by the fact that they are substrates for drug efflux pumps (P-glycoprotein) and/or by the acquisition of point mutations in tubulin residues important for drug-tubulin binding. To bypass these resistance systems, we have(More)
A method called "South Western blot mapping" for rapid characterization of both DNA binding proteins and their specific sites on genomic DNA is described. Proteins are separated on a sodium dodecyl sulfate (SDS) polyacrylamide gel, renatured by removing SDS in the presence of urea, and blotted onto nitrocellulose by diffusion. The genomic DNA region of(More)
Homocamptothecin (hCPT), a camptothecin (CPT) analogue with a seven membered beta-hydroxylactone which combines enhanced plasma stability and potent topoisomerase I (Topo I)-mediated activity, is an attractive template for the elaboration of new anticancer agents. Like CPT, hCPT carries an asymmetric tertiary alcohol and displays stereoselective inhibition(More)