Learn More
Antineoplastic chemotherapies are particularly efficient when they elicit immunogenic cell death, thus provoking an anticancer immune response. Here we demonstrate that autophagy, which is often disabled in cancer, is dispensable for chemotherapy-induced cell death but required for its immunogenicity. In response to chemotherapy, autophagy-competent, but(More)
Stress or heat shock proteins (HSPs) 70 and 90 are powerful chaperones whose expression is induced in response to a wide variety of physiological and environmental insults. These proteins have different functions depending on their intracellular or extracellular location. Intracellular HSPs have a protective function. They allow the cells to survive(More)
Myeloid-derived suppressor cells (MDSC) accumulate in the spleen and tumor bed during tumor growth. They contribute to the immune tolerance of cancer notably by inhibiting the function of CD8(+) T cells. Thus, their elimination may hamper tumor growth by enhancing antitumor T-cell functions. We have previously reported that some anticancer agents relied on(More)
Cyclophosphamide is one of several clinically important cancer drugs whose therapeutic efficacy is due in part to their ability to stimulate antitumor immune responses. Studying mouse models, we demonstrate that cyclophosphamide alters the composition of microbiota in the small intestine and induces the translocation of selected species of Gram-positive(More)
Exosomes are nanometer sized membrane vesicles invaginating from multivesicular bodies and secreted from epithelial and hematopoietic cells. They were first described "in vitro" but vesicles with the hallmarks of exosomes are present in vivo in germinal centers and biological fluids. Their protein and lipid composition are unique and could account for their(More)
Bleomycin (BLM) is an anticancer drug currently used for the treatment of testis cancer and Hodgkin lymphoma. This drug triggers cancer cell death via its capacity to generate radical oxygen species (ROS). However, the putative contribution of anticancer immune responses to the efficacy of BLM has not been evaluated. We make here the observation that BLM(More)
BACKGROUND In HER2-overexpressing breast cancer, accumulating preclinical evidences suggest that some chemotherapies, like trastuzumab, but also taxanes, are able to trigger a T helper 1 (Th1) anticancer immune response that contribute to treatment success. T helper 1 immune response is characterised by the expression of the transcription factor T-bet in(More)
Tumors that progress do so via their ability to escape the antitumor immune response through several mechanisms, including developing ways to induce the differentiation and/or recruitment of CD4(+)CD25(+) Tregs. The Tregs, in turn, inhibit the cytotoxic function of T cells and NK cells, but whether they have an effect on the cytotoxic function of(More)
The synergistic antitumor effects of the combination therapy imatinib mesylate (IM) and IL-2 depended upon NK1.1- expressing cells and were associated with the accumulation of CD11c(int)B220(+)NK1.1(+) IFN-producing killer dendritic cells (IKDC) into tumor beds. In this study, we show that the antitumor efficacy of the combination therapy was compromised in(More)