Gráinne C O'Keeffe

Learn More
A reduction in dopaminergic innervation of the subventricular zone (SVZ) is responsible for the impaired proliferation of its resident precursor cells in this region in Parkinson's disease (PD). Here, we show that this effect involves EGF, but not FGF2. In particular, we demonstrate that dopamine increases the proliferation of SVZ-derived cells by releasing(More)
Dopaminergic receptors are expressed on neural precursor cells (NPCs) in the subventricular zone (SVZ) and are known to regulate NPC proliferation and differentiation fate in this region. We now report that this optimally requires the simultaneous activation of both D1-like and D2-like dopaminergic receptors with the agonists Bromocriptine, SKF-38393 and(More)
Dopamine plays a key role in the regulation of stem cell turnover and neurogenesis in the subventricular zone. This effect is mediated by dopamine-induced release of epidermal growth factor (EGF), to promote stem cell proliferation in this area. We, therefore, sought to investigate whether a disintegrin and metalloprotease (ADAMs) are implicated in this(More)
Huntington's disease (HD) is an inherited neurodegenerative disorder that is classically defined by a triad of movement and cognitive and psychiatric abnormalities with a well-established pathology that affects the dopaminergic systems of the brain. This has classically been described in terms of an early loss of dopamine D2 receptors (D2R), although(More)
Cognitive deficits occur in up to 30% of patients with early Parkinson's disease, some of which are thought to result from dysfunction within the fronto-striatal dopaminergic network. Recently, it has been shown that a common functional polymorphism (Val(158)Met) in the catechol-O-methyltransferase (COMT) gene is associated with changes in executive(More)
Parkinson's (PD) and Huntington's disease (HD) are chronic neurodegenerative conditions of the brain with a variety of clinical presentations including a disorder of movement and a range of nonmotor deficits. HD is genetic in origin and the causative gene and protein known, namely mutant Huntingtin, which leads to widespread early neuronal dysfunction and(More)
  • 1