Goutam Koley

Learn More
One-dimensional (1D) conductive nanowire is one of the most important components for the development of nanosized electronic devices, sensors, and energy storage units. Great progresses have been made to prepare the 1D-conducting polymeric nanofibers by the low concentration process or the synthesis with hard or soft templates. However, it still remains as(More)
We demonstrate the application of polydimethylsiloxane (PDMS) thin films in highly sensitive pressure and oxygen sensors, designed for pressure and oxygen content measurements within the heart and blood vessels. PDMS thin film displacement as a result of pressure changes was transduced by a capacitive detection technique to produce quantitative measurement(More)
A new chemical sensor based on reverse-biased graphene/Si heterojunction diode has been developed that exhibits extremely high bias-dependent molecular detection sensitivity and low operating power. The device takes advantage of graphene's atomically thin nature, which enables molecular adsorption on its surface to directly alter graphene/Si interface(More)
Measurement of femtoscale displacements in the ultrasonic frequency range is attractive for advanced material characterization and sensing, yet major challenges remain in their reliable transduction using non-optical modalities, which can dramatically reduce the size and complexity of the transducer assembly. Here we demonstrate femtoscale displacement(More)
A reverse bias tunable Pd- and Pt-functionalized graphene/Si heterostructure Schottky diode H2 sensor has been demonstrated. Compared to the graphene chemiresistor sensor, the chemi-diode sensor offers more than one order of magnitude higher sensitivity as the molecular adsorption induced Schottky barrier height change causes the heterojunction current to(More)
This thesis presents a series of studies on single particle and biological cell detection and differentiation by a radio frequency (RF) interferometer system. Several techniques, such as dielectrophoresis (DEP), time domain method and 3D focusing have been illustrated and investigated to demonstrate the capacity of interrogating the electric property of(More)
A novel method for synthesis of high quality InN nanowires, at temperatures well above their decomposition temperature, has been demonstrated by utilizing controlled oxygen flow in the growth chamber. Detailed structural and chemical analyses indicate that the nanowires consist of pure InN, with no evidence of In2O3 detected by any of the characterization(More)
Diameter-dependent electrical properties of InN nanowires (NWs) grown by chemical vapor deposition have been investigated. The NWs exhibited interesting properties of coplanar deflection at specific angles, either spontaneously, or when induced by other NWs or lithographically patterned barriers. InN NW-based back-gated field effect transistors (FETs)(More)