Learn More
We have demonstrated that a metal-dielectric-metal microcavity combined with quantum well intersubband transitions is an ideal system for the generation of cavity polariton states in the terahertz region. The metallic cavity has highly confined radiation modes that can be tuned in resonance with the intersubband transition. In this system we were able to(More)
Potential barriers around quantum dots (QDs) play a key role in kinetics of photoelectrons. These barriers are always created, when electrons from dopants outside QDs fill the dots. Potential barriers suppress the capture processes of photoelectrons and increase the photoresponse. To directly investigate the effect of potential barriers on photoelectron(More)
A BLOCKINtwo‐dimensional BLOCKINsuperlattice BLOCKINmetallic BLOCKINphotonic BLOCKINcrystal (PhC) BLOCKINand BLOCKINits fabrication by BLOCKINnanoimprint lithography BLOCKINon tantalum substrates are presented. The superior tailoring capacity of the superlattice PhC geometry is used to achieve spectrally selective solar absorbtion optimized BLOCKINfor(More)
When two resonant modes in a system with gain or loss coalesce in both their resonance position and their width, a so-called exceptional point occurs, which acts as a source of non-trivial physics in a diverse range of systems. Lasers provide a natural setting to study such non-Hermitian degeneracies, as they feature resonant modes and a gain material as(More)
There is an increasing interest in using graphene (1, 2) for optoelectronic applications. (3-19) However, because graphene is an inherently weak optical absorber (only ≈2.3% absorption), novel concepts need to be developed to increase the absorption and take full advantage of its unique optical properties. We demonstrate that by monolithically integrating(More)
The regime of ultrastrong light-matter interaction has been investigated theoretically and experimentally, using zero-dimensional electromagnetic resonators coupled with an electronic transition between two confined states of a semiconductor quantum well. We have measured a splitting between the coupled modes that amounts to 48% of the energy transition,(More)
We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating(More)
We present a bi-functional surface emitting and surface detecting mid-infrared device applicable for gas-sensing. A distributed feedback ring quantum cascade laser is monolithically integrated with a detector structured from a bi-functional material for same frequency lasing and detection. The emitted single mode radiation is collimated, back reflected by a(More)
We characterize the performance of a quantum well infrared photodetector (QWIP), which is fabricated as a photonic crystal slab (PCS) resonator. The strongest resonance of the PCS is designed to coincide with the absorption peak frequency at 7.6 µm of the QWIP. To accurately characterize the detector performance, it is illuminated by using single mode(More)