Gordon S Mitchell

Learn More
The ventilatory response to hypoxia depends on the pattern and intensity of hypoxic exposure and involves several physiological mechanisms. These mechanisms differ in their effect (facilitation or depression) on different components of ventilation (tidal volume and frequency) and in their time course (seconds to years). Some mechanisms last long enough to(More)
Breathing is a vital behavior that is particularly amenable to experimental investigation. We review recent progress on three problems of broad interest. (i) Where and how is respiratory rhythm generated? The preBötzinger Complex is a critical site, whereas pacemaker neurons may not be essential. The possibility that coupled oscillators are involved is(More)
Intermittent hypoxia causes a form of serotonin-dependent synaptic plasticity in the spinal cord known as phrenic long-term facilitation (pLTF). Here we show that increased synthesis of brain-derived neurotrophic factor (BDNF) in the spinal cord is necessary and sufficient for pLTF in adult rats. We found that intermittent hypoxia elicited(More)
Episodic hypoxia evokes a sustained augmentation of respiratory motor output known as long-term facilitation (LTF). Phrenic LTF is prevented by pretreatment with the 5-hydroxytryptamine (5-HT) receptor antagonist ketanserin. We tested the hypothesis that 5-HT receptor activation is necessary for the induction but not maintenance of phrenic LTF. Peak(More)
The hippocampus is important for the acquisition of new memories. It is also one of the few regions in the adult mammalian brain that can generate new nerve cells. The authors tested the hypothesis that voluntary exercise increases neurogenesis and enhances spatial learning in mice selectively bred for high levels of wheel running (S mice). Female S mice(More)
Intermittent hypoxia elicits long-term facilitation (LTF), a persistent augmentation (hours) of respiratory motor output. Considerable recent progress has been made toward an understanding of the mechanisms and manifestations of this potentially important model of respiratory plasticity. LTF is elicited by intermittent but not sustained hypoxia, indicating(More)
Repeated isocapnic hypoxia evokes long-term facilitation (LTF) of phrenic nerve activity in rats. We wished to determine: (1) whether hypoxia-induced LTF is serotonin dependent; and (2) whether hypoxia-induced LTF is a property of upper airway motoneurons. Phrenic and hypoglossal nerve activities were recorded in urethane anesthetized, vagotomized,(More)
1. Intermittent hypoxia elicits long-term facilitation (LTF) of phrenic motor output in anaesthetized rats. We tested the hypothesis that an equal cumulative duration of continuous hypoxia would not elicit phrenic LTF. 2. Integrated phrenic nerve activity was recorded in urethane-anaesthetized, vagotomized, paralysed and ventilated rats exposed to: (1) 3 X(More)
Although recent evidence demonstrates considerable neuroplasticity in the respiratory control system, a comprehensive conceptual framework is lacking. Our goals in this review are to define plasticity (and related neural properties) as it pertains to respiratory control and to discuss potential sites, mechanisms, and known categories of respiratory(More)
We tested the hypothesis that chronic intermittent hypoxia (CIH) elicits plasticity in the central neural control of breathing via serotonin-dependent effects on the integration of carotid chemoafferent inputs. Adult rats were exposed to 1 week of nocturnal CIH (11-12% O(2)/air at 5 min intervals; 12 hr/night). CIH and untreated rats were then anesthetized,(More)