Gordon M. Redding

Learn More
When starting limb and target locations were simultaneously visible in a visuomotor task, performance during prism exposure was nearly perfect, but aftereffects were absent. When starting limb location was not visible, accurate exposure performance was slow to develop, but aftereffects were substantial. Adaptive spatial alignment of sensorimotor spaces and(More)
Data and theory from prism adaptation are reviewed for the purpose of identifying control methods in applications of the procedure. Prism exposure evokes three kinds of adaptive or compensatory processes: postural adjustments (visual capture and muscle potentiation), strategic control (including recalibration of target position), and spatial realignment of(More)
Under spatial misalignment of eye and hand induced by laterally displacing prisms (11.4 degrees in the rightward direction), subjects pointed 60 times (once every 3 s) at a visually implicit target (straight ahead of nose, Experiment 1) or a visually explicit target (an objectively straight-ahead target, Experiment 2). For different groups in each(More)
Theory and data from normal prism adaptation are applied toward understanding the ameliorating effects of prism adaptation for left unilateral neglect patients. Neglect is proposed to be, at least in part, a dysfunction in selection of the region of space appropriate for the task at hand. Normally, a task-work space is strategically sized and positioned(More)
The performance of subjects whose starting limb location was visible when pointing to a sagittal target during exposure to prismatic displacement showed immediate target acquisition, but aftereffects of exposure were absent. When starting limb location was not visible, accurate exposure performance was slow to develop, but aftereffects were substantial.(More)
Prism exposure produces 2 kinds of adaptive response. Recalibration is ordinary strategic remapping of spatially coded movement commands to rapidly reduce performance error. Realignment is the extraordinary process of transforming spatial maps to bring the origins of coordinate systems into correspondence. Realignment occurs when spatial discordance signals(More)
Two types of adaptive processes involved in prism adaptation have been identified&colon: Slower spatial realignment among the several unique sensorimotor coordinate systems (spatial maps) and faster strategic motor control responses(including skill learning and calibration) to spatial misalignment. One measures the 1st process by assessing the aftereffects(More)
The effects of movement time and time to visual feedback (feedback time) on prism exposure aftereffects and direct effects were studied. In Experiment 1, the participants' (N = 60) pointing limb became visible early in the movement (.2-s feedback time), and eye-head aftereffects increased with increasing movement time (.5 to 3.0 s), but larger hand-head(More)
Aftereffect measures of visual shift and proprioceptive shift were obtained for prism exposure conditions in which, at the end of a sagittal pointing movement, most of the arm was visible (concurrent exposure) or only the first finger joint was visible (terminal exposure). Intermediate exposure conditions permitted view of the hand or the first two finger(More)