Gordon L Fain

Learn More
When light is absorbed within the outer segment of a vertebrate photoreceptor, the conformation of the photopigment rhodopsin is altered to produce an activated photoproduct called metarhodopsin II or Rh(*). Rh(*) initiates a transduction cascade similar to that for metabotropic synaptic receptors and many hormones; the Rh(*) activates a heterotrimeric G(More)
1. There are five morphological types of photoreceptors in the retina of the toad, Bufo marinus: red and green rods, single cones, and the principal and accessory members of double cones. The largest and most abundant of these is the red rod. 2. Intracellular recordings were used to investigate the dependence of the sensitivity of red rod responses on(More)
Why do vertebrates use rods and cones that hyperpolarize, when in insect eyes a single depolarizing photoreceptor can function at all light levels? We answer this question at least in part with a comprehensive assessment of ATP consumption for mammalian rods from voltages and currents and recently published physiological and biochemical data. In darkness,(More)
1. We have used suction electrode recording together with rapid steps into Li+ solution and 0.5 mM IBMX solution to estimate the rates of the guanylyl phosphodiesterase (PDE) and guanylyl cyclase in isolated rods of the salamander, Ambystoma tigrinum. 2. We show that both the PDE and cyclase velocities are accelerated by steady background light. The steady(More)
The vertebrate visual system can operate over a large range of light intensities. This is possible in part because the sensitivity of photoreceptors decreases approximately in inverse proportion to the background light intensity. This process, called photoreceptor light adaptation, is known to be mediated by a diffusible intracellular messenger, but the(More)
A 10 microm spot of argon laser light was focused onto the outer segments of intact mouse rods loaded with fluo-3, fluo-4 or fluo-5F, to estimate dark, resting free Ca(2+) concentration ([Ca(2+)](i)) and changes in [Ca(2+)](i) upon illumination. Dye concentration was adjusted to preserve the normal physiology of the rod, and the laser intensity was selected(More)
We have used suction electrode recording together with rapid steps into 0.5 mM IBMX solution to investigate changes in guanylyl cyclase velocity produced by pigment bleaching in isolated cones of the salamander Ambystoma tigrinum. Both backgrounds and bleaches accelerate the time course of current increase during steps into IBMX. We interpret this as(More)
1. Light adaptation has been studied in isolated red-sensitive cone photoreceptors of the salamander, using suction pipette recordings of circulating current. 2. In the presence of background illumination, the response to incremental dim flashes became desensitized according to the Weber-Fechner law. The recovery phase of the flash response was accelerated(More)
1. In order to study the role of cytoplasmic calcium concentration (Ca2+i) in rod photoreceptor light adaptation, we have attempted to prevent light-induced changes in Ca2+i by minimizing calcium fluxes across the outer segment plasma membrane. This was achieved by exposing the outer segment to a low-Ca2+, 0-Na+ solution, in which sodium was replaced with(More)
A dark-adapted toad rod can respond consistently to flashes of light which bleach an average of less than one pigment molecule in its outer segment. These responses are much less variable in amplitude than would be expected if rods were independent quantum detectors. Rods interact with one another by pooling their signals, so that at least 85 to 90 percent(More)