Gopinath Balakrish Nair

Learn More
Active surveillance of Vibrio parahaemolyticus infection among hospitalized patients in Calcutta, India, was initiated in January 1994. The incidence of cases of V. parahaemolyticus infection suddenly increased in February 1996 and has remained high since then. One hundred thirty-four strains of V. parahaemolyticus isolated from January 1994 to August 1996(More)
Vibrio cholerae is a globally important pathogen that is endemic in many areas of the world and causes 3-5 million reported cases of cholera every year. Historically, there have been seven acknowledged cholera pandemics; recent outbreaks in Zimbabwe and Haiti are included in the seventh and ongoing pandemic. Only isolates in serogroup O1 (consisting of two(More)
The relationship among (i) the local incidence of cholera, (ii) the prevalence in the aquatic environment of Vibrio cholerae, and (iii) bacterial viruses that attack potentially virulent O1 and O139 serogroup strains of this organism (cholera phages) was studied in Dhaka, Bangladesh. Over nearly a 3-year period, we found that significantly more(More)
The genotypes of 78 strains of Helicobacter pylori from Calcutta, India (55 from ulcer patients and 23 from more-benign infections), were studied, with a focus on putative virulence genes and neutral DNA markers that were likely to be phylogenetically informative. PCR tests indicated that 80 to 90% of Calcutta strains carried the cag pathogenicity island(More)
The distribution of genes for an outer membrane protein (OmpW) and a regulatory protein (ToxR) in Vibrio cholerae and other organisms was studied using respective primers and probes. PCR amplification results showed that all (100%) of the 254 V. cholerae strains tested were positive for ompW and 229 ( approximately 98%) of 233 were positive for toxR. None(More)
A total of 32 Vibrio cholerae isolates were collected during a recent large cholera outbreak in Eastern India. Biochemical and serological studies revealed that all of the isolates belonged to serogroup O1, biotype El Tor, serotype Ogawa. Two multiplex PCR assays confirmed the presence of various toxigenic and pathogenic genes - ace, ctxAB, hlyA, ompU,(More)
The factors that enhance the waterborne spread of bacterial epidemics and sustain the epidemic strain in nature are unclear. Although the epidemic diarrheal disease cholera is known to be transmitted by water contaminated with pathogenic Vibrio cholerae, routine isolation of pathogenic strains from aquatic environments is challenging. Here, we show that(More)
The occurrence of outbreaks of cholera in Africa in 1970 and in Latin America in 1991, mainly in coastal communities, and the appearance of the new serotype Vibrio cholerae O139 in India and subsequently in Bangladesh have stimulated efforts to understand environmental factors influencing the growth and geographic distribution of epidemic Vibrio cholerae(More)
The sixth pandemic of cholera and, presumably, the earlier pandemics were caused by the classical biotype of Vibrio cholerae O1, which was progressively replaced by the El Tor biotype representing the seventh cholera pandemic. Although the classical biotype of V. cholerae O1 is extinct, even in southern Bangladesh, the last of the niches where this biotype(More)
Toxigenic Vibrio cholerae, rarely isolated from the aquatic environment between cholera epidemics, can be detected in what is now understood to be a dormant stage, i.e., viable but nonculturable when standard bacteriological methods are used. In the research reported here, biofilms have proved to be a source of culturable V. cholerae, even in nonepidemic(More)