Gopal B. Avinash

Learn More
Using intravital microscopy, we observed both decreases in red blood cell velocity and possible vasoconstriction in stria vascularis capillaries of the rat cochlea in response to loud sound (Quirk et al., 1991). However, our observation of vasoconstriction was subject to error in measurements from the two dimensional images obtained with our silicon(More)
Fluorescence microscopy can be a useful tool in the early detection of pathological changes in the stereocilia of outer hair cells which have undergone acoustic overstimulation. Fluorescent phalloidin, a highly specific F-actin stain, can be used to label F-actin in stereocilia. In this study, phalloidin label is used to determine quantitative changes of(More)
A method is described for the measurement of basilar membrane (BM) vibration velocimeter (LDV). The instrumentation was coupled to a compound microscope which served to visualize reflective glass microbeads placed on the BM. The laser beam of the LDV was focused in the microscope object plane and positioned over the reflective bead. We show examples of(More)
Voltage recorded from an electrode on the round window (RW) of guinea pig has characteristics that reflect the activity of auditory-nerve fibers in the absence of acoustic stimulation. Fast Fourier transformation (FFT) of the noise recorded from the RW electrode shows a broad spectral peak from 0.8-1.0 kHz. The magnitude of the biological noise is increased(More)
Until recently, most studies addressing the trade-off between spatial resolution and quantum noise were performed in the context of single-slice CT. In this study, we extend the theoretical framework of previous works to volumetric CT and further extend it by taking into account the actual shapes of the preferred reconstruction kernels. In the experimental(More)
In this study we investigated the autoregulation and hemodynamics of cochlear blood flow (CBF) as measured by laser-Doppler flowmetry. When the anterior inferior cerebellar artery was clamped, CBF decreased approximately 40% (not to "biological zero"), followed by a gradual increase. When the clamp was released, CBF quickly increased to as much as 167% of(More)
  • Pranjal Pragya Verma, Praveen Ganesh, G Avinash, K Chandrasekaran Ieee
  • 2013
Gravitational search algorithm (GSA) is based on the law of gravity and a mass of interaction. In GSA, the searcher agents are a collection of masses which interact with each other based on the Newtonian gravity and the laws of motion. This paper proposes a new clustered gravitational search algorithm (CGSA) to accelerate the performance of the GSA. Here,(More)
  • 1