Gonzalo Vegas-Sánchez-Ferrero

Learn More
A stochastic deformable model is proposed for the segmentation of the myocardium in Magnetic Resonance Imaging. The segmentation is posed as a probabilistic optimization problem in which the optimal time-dependent surface is obtained for the myocardium of the heart in a discrete space of locations built upon simple geometric assumptions. For this purpose,(More)
This paper proposes a topology-preserving multiresolution elastic registration method based on a discrete Markov random field of deformations and a block-matching procedure. The method is applied to the object-based interpolation of tomographic slices. For that purpose, the fidelity of a given deformation to the data is established by a block-matching(More)
Parallel imaging methods allow to increase the acquisition rate via subsampled acquisitions of the k-space. SENSE and GRAPPA are the most popular reconstruction methods proposed in order to suppress the artifacts created by this subsampling. The reconstruction process carried out by both methods yields to a variance of noise value which is dependent on the(More)
Ultrasound (US) imaging exhibits considerable difficulties for medical visual inspection and for development of automatic analysis methods due to speckle, which negatively affects the perception of tissue boundaries and the performance of automatic segmentation methods. With the aim of alleviating the effect of speckle, many filtering techniques are usually(More)
Carotid and coronary vascular incidents are mostly caused by vulnerable plaques. Detection and characterization of vulnerable plaques are important for early disease diagnosis and treatment. For this purpose, the echomorphology and composition have been studied. Several distributions have been used to describe ultrasonic data depending on tissues,(More)
A new soft thresholding method is presented. The method is based on relating each pixel in the image to the different regions via a membership function, rather than through hard decisions. The membership function of each of the regions is derived from the histogram of the image. As a consequence, each pixel will belong to different regions with a different(More)
The reliable estimation of noise characteristics in MRI is a task of great importance due to the influence of noise features in extensively used post-processing algorithms. Many methods have been proposed in the literature to retrieve noise features from the magnitude signal. However, most of them assume a stationary noise model, i.e., the features of noise(More)
A novel anisotropic diffusion filter is proposed in this work with application to cardiac ultrasonic images. It includes probabilistic models which describe the probability density function (PDF) of tissues and adapts the diffusion tensor to the image iteratively. For this purpose, a preliminary study is performed in order to select the probability models(More)
A complete first and second order statistical characterization of noise in SENSE reconstructed data is proposed. SENSE acquisitions have usually been modeled as Rician distributed, since the data reconstruction takes place into the spatial domain, where Gaussian noise is assumed. However, this model just holds for the first order statistics and obviates(More)