Gonzalo Jiménez-Osés

Learn More
Site-directed spin labeling in combination with EPR is a powerful method for providing distances on the nm scale in biological systems. The most popular strategy, double electron-electron resonance (DEER), is carried out at cryogenic temperatures (50-80 K) to increase the short spin-spin relaxation time (T2) upon which the technique relies. A challenge is(More)
Natural enzymes have evolved to perform their cellular functions under complex selective pressures, which often require their catalytic activities to be regulated by other proteins. We contrasted a natural enzyme, LovD, which acts on a protein-bound (LovF) acyl substrate, with a laboratory-generated variant that was transformed by directed evolution to(More)
A dynamical combinatorial approach for the study of weak carbohydrate/aromatic interactions is presented. This methodology has been employed to dissect the subtle structure-stability relationships that govern facial selectivity in these supramolecular complexes.
The unstrained S-allyl cysteine amino acid was site-specifically installed on apoptosis protein biomarkers and was further used as a chemical handle and ligation partner for 1,2,4,5-tetrazines by means of an inverse-electron-demand Diels-Alder reaction. We demonstrate the utility of this minimal handle for the efficient labeling of apoptotic cells using a(More)
Maleimides remain the reagents of choice for the preparation of therapeutic and imaging protein conjugates despite the known instability of the resulting products that undergo thiol-exchange reactions in vivo. Here we present the rational design of carbonylacrylic reagents for chemoselective cysteine bioconjugation. These reagents undergo rapid thiol(More)
Enzymes are typically highly stereoselective catalysts that enforce a reactive conformation on their native substrates. We report here a rare example in which the substrate controls the stereoselectivity of an enzyme-catalysed Michael-type addition during the biosynthesis of lanthipeptides. These natural products contain thioether crosslinks formed by a(More)
We report the strategic use of cyclohexyne and the more elusive intermediate, cyclopentyne, as a tool for the synthesis of new heterocyclic compounds. Experimental and computational studies of a 3-substituted cyclohexyne are also described. The observed regioselectivities are explained by the distortion/interaction model.
The role of twist-boat conformers of cyclohexanones in hydride reductions was explored. The hydride reductions of a cis-2,6-disubstituted N-acylpiperidone, an N-acyltropinone, and tert-butylcyclohexanone by lithium aluminum hydride and by a bulky borohydride reagent were investigated computationally and compared to experiment. Our results indicate that in(More)
  • 1