Learn More
Pleiotrophin (PTN) is a neurotrophic factor with important effects in survival and differentiation of dopaminergic neurons that has been suggested to play important roles in drug of abuse-induced neurotoxicity. To test this hypothesis, we have studied the effects of amphetamine (10 mg/kg, four times, every 2 h) on the nigrostriatal pathway of PTN(More)
We have comparatively studied the effects of two opioids in the rat place conditioning paradigm in identical experimental conditions (including double drug/saline conditioning daily sessions for 3 days), with the only exception of using either a two- or three-conditioning compartment apparatus. Morphine-induced place preference appeared to be similar with(More)
Midkine (MK), a neurotrophic factor with important roles in survival and differentiation of dopaminergic neurons, is upregulated in different brain areas after administration of different drugs of abuse suggesting MK could modulate drugs of abuse-induced pharmacological or neuroadaptative effects. To test this hypothesis, we have studied the effects of(More)
Pleiotrophin (PTN), a neurotrophic factor with important roles in survival and differentiation of dopaminergic neurons, is up-regulated in the nucleus accumbens after amphetamine administration suggesting that PTN could modulate amphetamine-induced pharmacological or neuroadaptative effects. To test this hypothesis, we have studied the effects of(More)
UNLABELLED Midkine (MK) and pleiotrophin (PTN) are two neurotrophic factors that are highly up-regulated in different brain regions after the administration of various drugs of abuse and in degenerative areas of the brain. A deficiency in both MK and PTN has been suggested to be an important genetic factor, which confers vulnerability to the development of(More)
Pleiotrophin (PTN the protein, Ptn the gene) signals downstream targets through inactivation of its receptor, the transmembrane receptor protein tyrosine phosphatase (RPTP)beta/zeta, disrupting the balanced activity of RPTPbeta/zeta and the activity of a constitutively active tyrosine kinase. As a consequence of the inactivation of RPTPbeta/zeta, PTN(More)
Fischer 344 (F344) and Lewis rat strains have been shown to exhibit different vulnerability to development or maintenance of opioid seeking behaviours probably due to differences in the endogenous opioid system. Since opioid and alpha(2)-adrenergic mechanisms closely interact in nociception and substance abuse, strain differences may be expected to affect(More)
The Fischer 344 (F344) rat strain differs from the Lewis strain in the response to neuropathic pain. Recently, we found that F344 rats totally recover from mechanical allodynia induced by chronic constriction injury (CCI) of the sciatic nerve 28 days after surgery whereas Lewis rats are initiating their recovery at this time point. Thus, the use of this(More)
We previously demonstrated that pleiotrophin (PTN the protein, Ptn the gene) highly regulates the levels of expression of the genes encoding the proteins of the renin-angiotensin pathway in mouse aorta. We now demonstrate that the levels of expression of these same genes are significantly regulated in mouse aorta by the PTN family member midkine (MK the(More)
To better understand the phenotype of pleiotrophin (PTN the protein, Ptn the gene) genetically deficient mice (Ptn -/-), we compared the transcriptional profiles of aortae obtained from Ptn -/- and wild type (WT, Ptn +/+) mice using a 14,400 gene microarray chip (Affymetrix) and confirmed the analysis of relevant genes by real time RT-PCR. We found striking(More)