Learn More
The in vivo microdialysis methodology was used to assess the effect of N-methyl-D-aspartate (NMDA) receptor ligands on glutamate (GLU), aspartate (ASP) and gamma-aminobutyrate (GABA) extracellular levels in the striatum of anaesthetized rats, after damage to the dopamine (DA) nigrostriatal pathway by injections of different doses of 6-hydroxydopamine(More)
Brain-derived neurotrophic factor (BDNF) enhances survival and protects dopaminergic neurons from neurotoxicity. We have examined in primary cultures of fetal mesencephalic neurons the expression of BDNF transcripts and its regulation by glutamate receptor agonists. RT-PCR experiments showed in these cultures the expression of mRNA encoding for neurotrophin(More)
The microdialysis technique was used to study the in vivo extracellular levels of norepinephrine in the bed nucleus of the stria terminalis. A basal level of 2.34 +/-0.25 fmol/microl of norepinephrine was observed. Desipramine (2 and 10 microM), a norepinephrine uptake blocker, significantly increased extracellular levels of norepinephrine. Reversed(More)
The microdialysis technique was utilized to study the effects of N-methyl-D-aspartate (NMDA) receptor ligands on the in vivo release of endogenous glutamate (Glu) and aspartate (Asp) from the rat striatum. Addition of NMDA (250 and 500 microM) to the dialysis perfusion solution resulted in a striking dose-dependent increase in extracellular concentrations(More)
Dopaminergic nigrostriatal neurons may be considered as bipolar functional entities since they are endowed with the ability to synthesize, store and release the transmitter dopamine (DA) at the somatodendritic level in the substantia nigra (SN). Such dendritic DA release seems to be distinct from the transmitter release occurring at the axon terminal and(More)
The bed nucleus of the stria terminalis pars ventralis (vBNST) receives dense noradrenergic terminals and contains the highest concentration of noradrenaline (NA) in the brain. We used autoradiography following retrograde axonal transport of [(3)H]-NA to identify selectively whether noradrenergic neurons innervating the vBNST originate in the medulla(More)
The identity of the postulated excitatory transmitter released by glomus cells is not known. Since our preliminary work on paraffin sections of the cat carotid body indicated that most glomus cells were intensely immunoreactive to glutamate, we decided to investigate whether glutamate might be such a transmitter, using two approaches. One approach was to(More)
Repeated amphetamine (AMPH) administration results in behavioral sensitization. To investigate the participation of the opioid system in this phenomenon, we examined the effects of acute and repeated AMPH administration on mu-opioid receptor (MOR) mRNA levels in the nucleus accumbens (NAc) and striatum (STR) of rats, by quantitative non-radioactive in situ(More)