Gonzalo Abellán

Learn More
Few-layer black phosphorus (BP) is a new two-dimensional material which is of great interest for applications, mainly in electronics. However, its lack of environmental stability severely limits its synthesis and processing. Here we demonstrate that high-quality, few-layer BP nanosheets, with controllable size and observable photoluminescence, can be(More)
a Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain. b Instituto de Tecnología Química (UPV-CSIC). Universidad Politécnica de Valencia – Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022, Valencia, Spain. c Oak Ridge National Laboratory, Materials Science(More)
A magnetic photoresponsive hybrid material is prepared by intercalation of a switchable trans-azobenzene-4,4'-dicarboxylate guest in the interlamellar space offered by a ferromagnetic Co(2+)Al(3+)-layered double hydroxide (LDH) host. Magnetic switching is triggered by compression/modification of the in-plane structure coupled the guest's isomerization(More)
Some recent reports claiming room temperature spontaneous magnetization in layered double hydroxides (LDHs) have been published; however, the reported materials cause serious concern as to whether this cooperative magnetic behavior comes from extrinsic sources, such as spinel iron oxide nanoparticles. The syntheses of crystalline Fe(3+)-based LDHs with and(More)
Black phosphorus (BP) was functionalized with organic moieties on the basis of liquid exfoliation. The treatment of BP with electron-withdrawing 7,7,8,8-tetracyano-p-quinodimethane (TCNQ) led to electron transfer from BP to the organic dopant. On the other hand, the noncovalent interaction of BP with a perylene diimide was mainly due to van der Waals(More)
The preparation and characterization of a novel hybrid material based on the combination of a 2D-layered double hydroxide (LDH) nanosheets and a 1D-coordination polymer (1D-CP) has been achieved through a simple mixture of suspensions of both building blocks via an exfoliation/restacking approach. The hybrid material has been thoroughly characterized(More)
Covalently functionalized graphene derivatives were synthesized via benchmark reductive routes using graphite intercalation compounds (GICs), in particular KC8. We have compared the graphene arylation and alkylation of the GIC using 4-tert-butylphenyldiazonium and bis(4-(tert-butyl)phenyl)iodonium salts, as well as phenyl iodide, n-hexyl iodide, and(More)
Thermal treatment of the hybrid material formed by the spontaneous precipitation of graphene oxide and Ni,Mn layered double hydroxide leads to the segregation of nickel metal nanoparticles (Ni NPs) and the decomposition of graphene to CO(2). Increasing the temperature increases the Ni NP size and results in the complete disappearance of graphene.