Gonen Memisoglu

Learn More
In response to chromosomal double-strand breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint, which is orchestrated by the PI3 kinase-like protein kinases ATR and ATM (Mec1 and Tel1 in budding yeast). Following DSB formation, Mec1 and Tel1 phosphorylate histone H2A on serine 129 (known as γ-H2AX). We used caffeine to inhibit the checkpoint(More)
To allow for sufficient time to repair DNA double-stranded breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint. In budding yeast, Rad53 (mammalian Chk2) phosphorylation parallels the persistence of the unrepaired DSB and is extinguished when repair is complete in a process termed recovery or when the cells adapt to the DNA damage checkpoint.(More)
Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously(More)
Protein-protein interactions between MBS and PKG are mediated by the involvement of C-terminal domain of MBS, MBS(CT180) and N-terminal coiled coil (CC) leucine zipper (LZ) domain of PKG-Iα, PKG-Iα1(-59). MBS(CT180) is comprised of three structurally variant domains of non-CC, CC, and LZ nature. Paucity of three-dimensional structural information of these(More)
  • 1